Biomimetic Hydrogen Production and Activation: The Hydrogenases

Marcetta Y. Darensbourg

Texas A&M University Department of Chemistry College Station, Texas marcetta@mail.chem.tamu.edu

Acknowledgements: \$\$ NSF, Welch Foundation

Mike Hall, Don Darensbourg, Manny Soriaga

2006 Summer Research Group

Motivation for Research on Hydrogenases: 2006

Looming Energy Crisis

Pollution and Global Warming

high low

CO concentration

http://www.ecology.com/ecology-today/tracking-air-pollution/

Stockbridge, Ga. Aug. 31, 2005. (AP Photo/Gene Blythe) Motivation for Research on Hydrogenases: ca. 1930

Marjory Stephenson and the River Ouse, Cambridge U.K.

Discoverer of hydrogenases in microorganisms, isolated from polluted river mud, which mediate methane formation

Fermentation of glucose by anaerobic Methanoarchaea

Glucose \rightarrow acetate/formate + CO₂ + H₂

 $H_2 + CO_2 \rightarrow CH_4 + 2 H_2O$

"Bact. Coli has been shown to catalyse the reaction:

 $H_2 \leftrightarrows 2 H^+ + 2 e^-$

In a completely reversible way. The hydrogenase system is the most negative reversible oxidation-reduction as yet described in living cells."

 $(pH = 7.02, H_2 \text{ pressure} = 600 \text{ mm Hg}, \text{Potential} = -.401 \text{ V}.$

Hydrogenase Sophistication

Richard Cammack, (Nature, Vol. 397, 1999)

"The [Fe]-hydrogenases are highly evolved catalysts. Under optimum conditions, each molecule of the D. desulfuricans enzymes can produce 9,000 molecules of hydrogen per second at 30°C . . . Extrapolation suggests that 1 mole of hydrogenase could produce enough hydrogen to fill the airship Graf Zeppelin in ten minutes, or the main liquid-hydrogen tank of the Space Shuttle in two hours (this fanciful calculation assumes a sufficient supply of reductant and protons, and disregards the time required to transfer hydrogen from solution to the gas phase)."

But, 1 mole = 90 kD = ca. 200 lbs.

Electrocatalysis of H₂ Uptake

Direct comparison of the electrocatalytic oxidation of hydrogen by an enzyme and a platinum catalyst

Anne K. Jones, Emma Sillery, Simon P. J. Albracht, and Fraser A. Armstrong

Chem. Commun, 2002, 866-867.

Results: Molecules of *Allochromatium vinosum* [NiFe]-hydrogenase adsorbed on a pyrolytic graphite electrode the nickel–iron active site catalyzes hydrogen oxidation at a diffusion-controlled rate matching that achieved by platinum.

OK!... then use the enzymes...

But, the general impression is...

The enzymes are derived from air-sensitive, extremophiles.

Oxidative tolerance of Hydrogenases in various microorganisms

All have mechanisms for recovery from oxygen stress : A challenge for the development of bio-inspired catalysts

Vincent, et al., JACS, 2005

<u>Hydrogenases</u>

4Fe4S Cluster-Containing

[FeFe]

- ♦ H₂ production
- ♦ Activity 10 100 x [NiFe]H₂ase
- ♦ Most O₂ sensitive H₂ase

[NiFe] / [NiFeSe]

- H_2 consumption
- ♦ Majority of H₂ases
- ◆ H₂ affinity 100 x [Fe]H₂ase
- ◆Terminal S-Cys → Se-Cys

<u>??Fe(CC</u>

Thauer

[NiFe] Hydrogenase from Desulfovibrio gigas

2.3 2.2 2.1 g value

Gas Access Channels to the Active Site

Montet, et al. Nat. Struct. Biol, 1997

Lindahl's Mechanism for H₂ Uptake by Ni-cysteine

Lindahl et al., Biochemistry, 1994, 33, 14339

H

Y. Nicolet, et al., TIBS, 2000, 138.

The Appeal of the Dithiomethylamine Bridge

 \implies Would assist in heterolytic H₂ cleavage

The Appeal of the Dithiomethylamine Bridge

 \implies Would assist in heterolytic H₂ cleavage

Hieber, Seyferth: $(\mu-S_2)Fe_2(CO)_6$

Binuclear Iron/Sulfur/Carbon Monoxide: A Foundation Molecule for S-based Reactivity

Selections of Reactivity for $(\mu-S_2)Fe_2(CO)_6$ and $\mu(S)_2Fe_2(CO)_6$

 Fe^{2+} , Pd(PPh₃)₂²⁺

J. Organomet. Chem., 1982 *J. Organomet. Chem.*, 1981 Averill, et al., *Organometallics*, 1995

Primordial Carbonylated Iron-Sulfur Compounds and the Synthesis of Pyruvate - George Cody et al. Science, 2000.

Especially Impressive Models

Rauchfuss

Pickett

Rauchfuss Approach to a μ -CO Complex

Rauchfuss et al., J. Am. Chem. Soc. 2004, 126, 15151

Other Advances:

Structural/Functional Model: in pursuit of Light-driven H₂ production

Structural Models: Achieving the Thiolate bridge to another iron

Åkermark and Sun 2003

Song 2004

Summary of Model/Active Site Analogies

H/D Exchange Experiments

Zhao et al. J. Am. Chem. Soc. 2001, 123, 9710.; Inorg. Chem. 2002, 41, 3917.

Light Assisted H/D Exchange in D_2/H_2O Mixture Catalyzed by $1-E^+$

 $(\mu-E)Fe_2^+ + D_2/H_2O \longrightarrow (\mu-E)Fe_2^+ + HOD + HD$ E = H or SMe

Likely Mechanism

Open site Created by CO Loss

 H^+ uptake and H_2 production in [FeFe] H_2 ase active site

Electrochemical Mechanism: CCEE

Electrocatalytic H₂ Production from Fe^IFe^I Complexes and Weak Acid (HOAc) In CH₃CN (2nd reduction: All-CO complexes)

- current α [H⁺]
- positive shift in potential from non-catalyzed HOAc reduction (-2.2 V at the glassy carbon electrode in the absence of the [FeFe]H₂ase model complex)

Mechanism for Electrocatalytic H₂ Production from Fe^IFe^I Complexes and Weak Acid (HOAc) (1st reduction: Phosphine derivatives)

Summary of Early Electrocatalysis Results:

 $(\mu$ -SRS)[Fe^I(CO)₃]₂

 $(\mu$ -SRS)[Fe^I(CO)₂L]₂

• H_2 from weak acid uses Fe⁰Fe⁰ redox level and very negative potentials (~ -1.9 V)

• H_2 from weak acid uses Fe⁰Fe^I redox level, also at -1.8 to -1.9 V

• H₂ from strong acid uses Fe^IFe^{II} redox level at -1.1 V, going through protonated species

 $Fe^{II}(\mu-H)Fe^{II} + e^{-} \rightarrow Fe^{I}\cdots Fe^{II}$

Conclusion: Mild potentials need strong acid; weak acids need highly negative potentials.

Question: Why is the enzyme so much better?

Why is the enzyme so much better? Models are symmetric. Enzyme is rotated.

Importance of Fe(CO)₃ Rotation: DFT Calculations shows shift of e-density of Fe-Fe bond upon rotation

Relation to the active site structure: Entatic state

Active site construction traps high energy, reactive structure

The Effect of the Donor Ability of L on Achieving a "Rotated" State

Lowers barrier to Fe(CO)₃ rotation

Could asymmetric complexes perform better???

Tye, Darensbourg, Hall, IC, 2006

Two Ligands Used for Asymmetric Model Complexes

1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes) R-N_N-R (R = 2,4,6-trimethylphenyl)

- Electron-rich donors
- Have been called "phosphine mimics"
- Unique steric characteristics
- Form strong Metal-Carbon bonds
- Bonus: analogue of cofactor for Thauer's H₂ase

1,3,5-triaza-7-phosphaadamantane (PTA)

- Basicity similar to PMe₃
- Water-soluble and air-stable
- Alternative to the use of TPPTS
- Alkylation or Protonation occurs at one N to afford an Ionic ligand ⇒
 Water-solubility is improved

Molecular structures of diiron-PTA and IMes complexes

Criteria for Electrocatalysis: current α [H⁺] Positive shift in potential from non-catalyzed HOAc reduction (-2.01 V \rightarrow -1.70 V and -1.54 V)

(Note: The symmetrical (μ -pdt)[Fe(CO)₂PTA]₂ produces H₂ at -1.78 V in CH₃CN.)

Electrocatalysis of H₂ Production Cyclic Voltammetry of (μ-pdt)[Fe(CO)₃][Fe(CO)₂(IMes)] in CH₃CN with Increments of HOAc

Inorg. Chem. 2005, 44, 5550.

Why does the IMes Complex Undergo a Two-Electron Reduction?

Capon *et al. OM*, **2005**, *24*, 2020. Tye *et al. Inorg. Chem.* **2005**, *44*, 5550. Chong *et al. Dalton Trans.*, **2003**, *21*, 4158.

Electrochemical Reduction of the IMes Ligand

COMMUNICATION

Electrochemical reduction of an imidazolium cation: a convenient preparation of imidazol-2-ylidenes and their observation in an ionic liquid

Brian Gorodetsky, Taramatee Ramnial, Neil R. Branda and Jason A. C. Clyburne* Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada. E-mail: clyburne@sfu.ca

Received (in Columbia, MO, USA) 14th May 2004, Accepted 17th June 2004 First published as an Advance Article on the web 5th August 2004

1,3-Bis(2,4,6-trimethylphenyl)imidazolium chloride is reduced electrochemically and chemically to produce a nucleophilic carbene, namely 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene. The carbene was also shown to be compatible with and persistent in the ionic liquid tetradecyl(trihexyl)phosphonium chloride.

Ionic liquids have come to the forefront as important components of "Green Chemistry"¹ and they appear ready to replace classical volatile organic solvents in many industrial applications, a move that could have a significant environmental impact. Due to their high thermal stability, low volatility, and variation in co-solvent miscibility,¹ ionic liquids have found applications in organic syntheses^{1,2} and recently in bulk chemical syntheses.³

nyl)imidazol-2-ylidene 1⁵ (inset in Fig. 1) suggesting that reduction of the imidazolium chloride produces the carbene.

These observations prompted us to test whether the reduction of [1H][Cl] can be accomplished on a preparative scale using potassium as a strong reducing agent. We have chosen to use 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene 1 to test the method, owing to its stature as arguably the most versatile and extensively used nucleophilic carbene. The optimised procedure uses potassium metal as the reductant and is best carried out as follows.[‡] A THF suspension of [1H][Cl] is treated with a lump of potassium metal and heated to reflux under a dry nitrogen atmosphere. This results in the production of a pale brown precipitate which separates from a red solution. The filtrate is evaporated and the solid residue is washed with cold hexane. The

Frontier Molecular Orbitals of 1-IMes

Computed Unpaired Spin Densities

Unpaired Spin Densities

Optimized Structures of the Reduced Forms

Tye et al. Inorg. Chem. 2005, 44, 5550.

At the electrode surface...

Tye et al. Inorg. Chem. 2005, 44, 5550.

Conclusions

- The extended π system of the IMes ligand allows the 1-IMes complex to undergo a simultaneous two-electron reduction.
- The redox-active IMes ligand acts as a model of the [4Fe4S] site of the H-cluster.
- The addition of the 1-IMes complex leads to a + 500mV positive shift for the reduction of HOAc.

Proton Reduction Studies: CH₃CN:H₂O (1:3) Comparison of Fe-monoPTA solution electrocatalyst and Pt electrode

De Novo Design of Synthetic Di-Iron(I) Complexes as Structural Models of the Reduced Form of Iron-Iron Hydrogenase

Tye, et al. Inorg. Chem. 2006, 45, 1552-1559.

Combination of Effects

Combination of Effects: A Summary

Conclusions

 Incorporation of the N or B functionalities stabilizes the rotated form, but potentially blocks the site for H⁺ acceptance.

The best method incorporates the use of steric bulk on the Sto-S linker and the use of strong donor ligand on the adjacent iron.

Acknowledgement: Jesse W. Tye and Michael B. Hall

The Future of Hydrogenase Research?

Hydrogenase 2007: The 8th International Hydrogenase Conference

> Colorado, USA August 05-10, 2007

http://www.chem.tamu.edu/hydrogenase/

hydrogenase@mail.chem.tamu.edu

Proton Reduction Studies in the Presence of Water: $CH_3CN:H_2O$ (1:3) The Fe-monoPTA solution electrocatalyst with added increments of HOAc; GC electrode

De Novo Design of Synthetic Di-Iron(I) Complexes as Structural Models of the Reduced Form of Iron-Iron Hydrogenase

Tye, et al. Inorg. Chem. 2006, 45, 1552-1559.

Combination of Effects

Combination of Effects

Combination of Effects: A Summary

Conclusions

 Incorporation of the N or B functionalities stabilizes the rotated form, but potentially blocks the site for H⁺ acceptance.

The best method incorporates the use of steric bulk on the Sto-S linker and the use of strong donor ligand on the adjacent iron.

Acknowledgement: Jesse W. Tye and Michael B. Hall

The Future of Hydrogenase Research?

Hydrogenase 2007: The 8th International Hydrogenase Conference

> Colorado, USA August 05-10, 2007

http://www.chem.tamu.edu/hydrogenase/

hydrogenase@mail.chem.tamu.edu