Non-Contact Methods of Measuring Stresses in High Temperature Materials

David R. Clarke

Qing Ma, Jun He, Don Lipkin, John Nychka

Samuel Margueron, Vladimir Tolpygo, Derek Gardiner

Everyone talks about the weather.. but nobody does anything about it

> Mark Twain (Samuel Clemens)

Everyone talks about **stresses**...... but nobody does anything about them

Outline

- Introduction to Cr³⁺ based luminescence and piezospectroscopy (luminescence and Raman).
- Phase transformations during the growth of alumina by thermal oxidation
- Latest developments on piezospectroscopy
- Modes of strain energy relief in oxide films and coatings
- Wrinkling, wrinkling kinetics leading to oxide film failure
- Buckling and buckle growth
- Conditions for spalling by the growth of buckles
- Large scale buckling
- Rumpling
- Monitoring damage evolution in TBCs by piezospectroscopy
- Summary

Principal Types of Piezospectroscopy

Vibrational piezospectroscopy – Raman piezospectroscopy

Luminescence piezospectroscopy

Single crystal silicon

Sapphire containing Cr dopant

Physical Basis of Luminescence Piezospectroscopy: Synopsis

Octahedral coordination of Cr³⁺

Piezospectroscopy Relation

Electronic Transitions of *d*³**Electrons**

Ambient pressure transitions in the visible

Strain alters ligand length and hence local potential on the electrons.

Electronic Transitions of *d*³**Electrons**

Ambient pressure transitions in the visible

Strain alters ligand length and hence local potential on the electrons.

Cr³⁺ Piezospectroscopy in Sapphire

In crystal coordinates, frequency shift, Δv , is related to stress:

 $\Delta v = \prod_{ij} \sigma_{ij}^c + \Lambda_{ijkl} \sigma_{ij}^c \sigma_{kl}^c$

where Π_{ij} are the piezo-spectroscopic coefficients.

Point symmetry of Cr^{3+} ion in sapphire imposes condition:

 $\Pi_{11} = \Pi_{22} = \Pi_a : \Pi_{33} = \Pi_c$

<u>R1 Line</u>:

$$\Pi_{ij} = \begin{pmatrix} 2.56 & 0 & 0 \\ 0 & 3.50 & 0 \\ 0 & 0 & 1.53 \end{pmatrix} \quad cm^{-1}/GPa$$

R2 Line:

$$\Pi_{ij} = \begin{pmatrix} 2.65 & 0 & 0 \\ 0 & 2.80 & 0 \\ 0 & 0 & 2.16 \end{pmatrix} \quad cm^{-1}/GPa$$

Calibration of piezo-spectroscopy coefficients

Piezospectroscopic Coefficients for R lines

	П11	П ₂₂	П ₃₃ (cm ⁻¹ /GPa	$\Pi_{11}+\Pi_{22}+\Pi_{33}$
R 1	2.56 *	3.50	1.53	7.59
R2	2.65	2.80	2.16	7.61

* Parabolic fitting $\Lambda_{1111} = -0.8 \text{ cm}^{-1}/\text{GPa}^{-1}$

Analysis for General Orientation

- In Crystal Structure Coordinates, $x'_i \quad \Delta v = \pi_{ij} \sigma'_{ij}$
- Point Symmetry of $A_{l_2}O_3$ (D_{3d}) $\pi_{11} = \pi_{22} \neq \pi_{33}$

$$\pi_{ij} = O \ \delta_{ij} \neq 1$$

10

- Deformation Frame Coodinates, x_i
- Transformation matrix a_{ij} , thus $x_i = a_{ij} x'_i$
- Thus, stress in crystal structure coordinates

$$\sigma'_{ij} = a_{ik} a_{jl} \sigma_{kl}$$

In general case

 $\begin{aligned} \Delta v &= \pi_{11}(\sigma_{11} + \sigma_{22} + \sigma_{33}) + (\pi_{33} - \pi_{11}) \left(a_{31}^2 \sigma_{11} + a_{32}^2 \sigma_{22} + a_{33}^2 \sigma_{33} \right. \\ &+ 2 \left(\pi_{33} - \pi_{11}\right) \left(a_{31} a_{32} \sigma_{12} + a_{31} a_{33} \sigma_{13} + a_{32} a_{33} \sigma_{23}\right) \end{aligned}$

• Pure Hydrostatic stress

$$\Delta v = (2\pi_{11} + \pi_{33}) P$$

Calibration for polycrystalline, randomly oriented alumina

Hydrostatic stress

Uniaxial Compression to tension

Summary of Luminescence Shifts

Piezospectroscopic Shift:

$$\Delta v = \prod_{ij} \sigma_{ij}^* + \Lambda_{ijkl} \sigma_{ij}^* \sigma_{kl}^*$$

(For polycrystalline alumina: $\Delta v = (\Pi_{11} + \Pi_{22} + \Pi_{33}) \langle \sigma_{11} + \sigma_{22} + \sigma_{33} \rangle$)

Temperature Shifts:

 $v(T) = v(T_o) + \alpha(T - T_o)$ $\alpha_{R_1} = -0.144$ $\alpha_{R_2} = -0.134$ cm^{-1}/C

Concentration Shift:

$$v(\%Cr) = v_o + 0.99 a / o Cr cm^{-1}$$

Effect of Stress Gradient

Stress gradient causes peak broadening

$$\frac{d\sigma}{dz} = \frac{3}{t\Pi_{ii}}\sqrt{\left(w^2 - w_o^2\right)}$$

Lipkin and Clarke, Oxidation of Metals (1995)

Optical Microprobe Configuration

Internal Stress Distribution in Polycrystalline Alumina

Observation in transmitted light through cross-polarizers of alumna.

Variation in stress made visible through the piezo-optical effect.

Raman Piezospectroscopy

Raman Piezospectroscopy

Raman Piezospectroscopy of Silicon

Active vibrational modes Transverse Optical --- TO1 along [100], TO2 along [010] Longitudinal Optical – LO along [001]

Raman Piezospectroscopy

1. Strain-free c-Si Polarizability tensor

TO ₁	TO ₂	Ю
$(0 \ 0 \ 0)$	$(0 \ 0 \ 1)$	$(0 \ 1 \ 0)$
$\mathbf{R}_1 = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$	$\mathbf{R}_2 = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$	$\mathbf{R}_3 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$
(0 1 0)	$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$	(0 0 0)

Scattering efficiency

$$\mathbf{S} = \mathbf{A}\sum_{j} |\mathbf{e}_{j} \cdot \mathbf{R}_{j} \cdot \mathbf{e}_{s}|^{2}$$

Raman line frequency $v_0 = 520 \text{ Rcm}^{-1}$

2. In the presence of a strain ε_{ij}

 $\begin{vmatrix} p\varepsilon_{XX} + q(\varepsilon_{YY} + \varepsilon_{ZZ}) - \lambda & 2r\varepsilon_{XY} & 2r\varepsilon_{XZ} \\ 2r\varepsilon_{XY} & p\varepsilon_{YY} + q(\varepsilon_{XX} + \varepsilon_{ZZ}) - \lambda & 2r\varepsilon_{YZ} \\ 2r\varepsilon_{ZX} & 2r\varepsilon_{ZY} & p\varepsilon_{ZZ} + q(\varepsilon_{XX} + \varepsilon_{YY}) - \lambda \end{vmatrix} = 0$

Eigenvalues $\lambda_{ij} = v_i^2 - v_0^2$, i = 1, 2, 3

Frequency shift

 $\Delta v_i = v_i - v_0 \cong \lambda_i / 2v_0$

Deformation Potentials (Anastassakis, 1985)

 $p = -1.43v_0^2$, $q = -1.89v_0^2$, $r = -0.59v_0^2$

Raman Piezospectroscopy In Electromigration

Phase Transformations in Alumina During

High Temperature Oxidation

Reported Phase Transformations in Alumina Ceramics, Powders and Films

Luminescence Identification of Alumina Phases

Oxidation Induced Transformation Sequence on MCrAI vs NiPtAI

Alumina Transformation Kinetics on NiAl

Phase identification by X-ray diffraction

Grumm and Grabke

Nucleation and Growth of α -alumina on NiAl

Oxidation Temperature 1100°C

Luminescence Mapping For Transformation Kinetics

 $R = A + B \log t$

Evolution of Stress in NiAl Single Crystal

NB. Alpha phase is under net tension under transformation is complete. Then oxide is under compression.

Nucleation and Growth of a-Alumina During Oxidation

Origin of Transformation Stresses

 $\theta \rightarrow \alpha$ transformation is accompanied by a 9.5 % volume decrease.

The transformation is constrained by the surrounding θ oxide, placing the α - islands under tension. This causes "tearing" of islands.

Heterogeneous Nucleation and Growth of α -alumina on NiAl

Note the radial cracks in the islands, giving the "star" contrast

TGO Morphology at 1000°C

1 hour θ ~ 0.5 μm thick

25 hour mixed α + θ

Fibrous θ -phase Transforms to α -alumina

1 hour at 1100°C

25 hour at 1100°C

Recent Developments

Stress Effects on the Luminescence Lifetime

Lifetime varies with crystallographic direction and linearly with stress

Use of Polarization to Distinguish Stress Components

Frequency shift proportional to mean stress in polycrystalline alumina:

$$\Delta v_{R2} = 7.62 \left(\sigma_{xx} + \sigma_{yy} + \sigma_{zz} \right) / 3$$

FIB cuts create a strip under uniaxial stress

Luminescence intensity – map around strip

Use of Polarization to Distinguish Stress Components

Imaging under different polarization conditions reveals directions of principal stresses by affecting R2/R1 peak area ratio.

End of Part I