

	$G(r,\omega) = \frac{\partial \ln \theta}{\partial t} = \frac{r}{2} \frac{\partial \theta}{\partial t}$	$H(r,\omega) = \frac{\partial \ln \theta}{\partial t} = \frac{\omega}{2} \frac{\partial \theta}{\partial t}$
	$\partial \ln r \theta \ \partial r$	$\partial \ln \omega \theta \partial a$
plane	- pr	-0.5(pr+1)
Line	$-prrac{K_1(pr)}{K_o(pr)}$	$-0.5 pr \frac{K_1(pr)}{K_o(pr)}$
Point	- pr - 1	-0.5 - pr

Model Systems Systems Service	Influence of delamination						
$\lesssim \downarrow$ AC heat	[k] (W/m	coat n∕K)	$[\rho C]_{coat}$ (J/cm ³ /K)	$[\alpha_z]_{coat}$ (mm ² /s)	L _{opt} (µm)	<i>Rc</i> (Kµm²/W)	
	1 .2	25	1.92	0.649	37.9	0.34	
	} 1.3	37	1.94	0.708	35.1	3.51	
Erroneous fitting	{ 1.6	67	2.25	0.744	41.4		
Ted Bennett, UCSB, 8/16/06 ICMR Summer Program on Advanced Thermostructural Materials 77							

