Chemical Hydrides: Amine Boranes

۲

Acknowledgements Department of Energy, Office of Basic Energy Sciences and Energy Efficiency and Renewable Energy.

> International Symposium on Materials Issues in Hydrogen Production and Storage August 2006

Operated by Battelle for the U.S. Department of Energy

Hydrogen-rich ammonia borane (AB)

NH_xBH_x Store hydrogen (>6 wt%/step)

	Wt% H ₂	T (K)
$NH_4BH_4 \rightarrow NH_3BH_3 + H_2$	6.1	<300
$NH_3BH_3 \rightarrow (NH_2BH_2)_n + H_2$	6.5	<375
$(NH_2BH_2)_n \rightarrow (NHBH)_n + H_2$	6.9	>375
$(\text{NHBH})_n \rightarrow \text{BN} + \text{H}_2$	7.3	>>800

Two sequential steps > 12 wt% hydrogen!

Solid state chemistry: thermodynamics and kinetics of hydrogen release?

Thermodynamics

 $BH_4 + 4H_2O \rightarrow B(OH)_4 + 4H_2$ $\Delta H = -250 \text{ kJ/mol}$

Approaches

Scanning calorimetry combined with mass detection and gravimetric analysis

- Thermodynamics of hydrogen loss
- Kinetics and insight into mechanism of H-release

NMR and Raman spectroscopy

- Solid state to study phase transitions and molecular dynamics
- Variable temperature for in-situ kinetic investigations

Neutron spectroscopy

- QENS (for dynamics of H motion)
- INS (structural properties)

Combination of experiment & theory to gain fundamental understanding of chemical & physical properties of AB

Ammonia borane isoelectronic with ethane

	NH ₃ BH ₃	CH ₃ CH ₃
MW	30.81	30.07
Mp[°C]	124	-183
M[D]	5.2	0
bonding	N->B dative	C-C covalent
R[A]	1.58 (1.62)	1.53
kg H ₂ /kg	191	2.1
kg H ₂ /liter	143	1.3

Background crystalline NH₃BH₃

- Synthesis (Shore and Parry in 1955)
- AB in equilibrium with diammoniate of diborane $2NH_3BH_3 \leftrightarrow [NH_3BH_2NH_3][BH_4]$
- NH₃BH₃ → H₂ + *polyaminoborane* at < 370 K. $\Delta H_{rxn} = -20$ kJ/mol (Wolf et al. 2000)

First order-disorder phase transition at 225 K, the low T structure is orthorhombic, the high T tetragonal (Reynhardt & Hoon)
Electrostatic bonding between (N)H⁺ and (B)H⁻ (dihydrogen bond) (Crabtree et al. 1999)

Thermal decomposition of solid AB

Stabilizing polymerization

Relieving instability

•Coiling of oligomers \rightarrow cyclization •Branching of oligomers

Simulated annealing reveals "coiled" or "cyclic" structure of oligomers, stabilized by dihydrogen bonds – precursors to observed cyclic products

Ammonia borane decomposition

Complex mixture of cyclic, branched polymeric products

Nano-phase ammonia borane

Use mesoporous silica (SBA-15) as a scaffold. The 6-7 nm wide channels will *hold* Ammonia Borane (NH_3BH_3) in the nano-phase. Should also preserve nanophase.

U.S. Department of Energy 11

Change in Reactivity and Selectivity

Ammonia borane in SBA-15

<u>Scaffolds</u>: enhance rates of H₂ release enhance purity of H₂ (little borazine) change in thermodynamics

Angew. Chem. Int. Ed. 2005, 44, 3578.

Fundamental Science Questions

$NH_3BH_3 \rightarrow (NH_2BH_2)_n + H_2 + ? < <100 ^{\circ}C$

How is H₂ formed from solid AB?

Is the mechanism intra or intermolecular? What is the activation barrier? Can we change it with catalysis, (*other*) Can we control the decomposition pathways?

Need approaches to study solid state kinetics

Phase transformation kinetics

Avrami Equation $X_{Crystal} = 1 - exp(-(kt)^n)$

Avrami rate as function of T (70-85 C)

U.S. Department of Energy 15

Arrhenius analysis of k(Avrami) vs. temperature

Kinetic model for hydrogen formation

Sigmoidal kinetic behavior Induction, Nucleation & Growth

Induction:

• Rate limiting. How to decrease (scaffold)?

Nucleation:

Physical or Chemical Change

Growth:

- hydrogen formation
- How do you modify pathways, change thermodynamics?

Induction, nucleation, growth

Optical microscope studies

Time 07 min10 min13 min14 min $75C \rightarrow 100C$

Crystal of AB (~0.1 mm)

Raman microscopy

"top" of crystal (1) is crystalline AB, bottom (5) is amorphous AB + ??. Beginning of nucleation?

Growth?

Intermolecular vs. Intramolecular

Nucleation?

Do we have dehydrocoupling of ionic or neutral intermediates?

$$\begin{array}{l} \textit{lonic pathway} \\ 2 \ \mathsf{NH}_3\mathsf{BH}_3 \ \leftrightarrows \ [\mathsf{NH}_3\mathsf{BH}_2\mathsf{NH}_3]^+[\mathsf{BH}_4]^- & (\text{isomerization, no } \mathsf{H}_2 \, \text{loss}) \\ \mathsf{AB} & \mathsf{DADB} \end{array}$$
$$\begin{array}{l} \mathsf{NH}_3\mathsf{BH}_3 \ + \ [\mathsf{NH}_3\mathsf{BH}_2\mathsf{NH}_3]^+[\mathsf{BH}_4]^- \\ \rightarrow [\mathsf{NH}_3\mathsf{BH}_2\mathsf{NH}_2-\mathsf{BH}_2\mathsf{NH}_3][\mathsf{BH}_4]^- + \mathsf{H}_2 \end{array}$$

Neutral pathway

2 $NH_3BH_3 \rightarrow NH_3BH_2-NH_2BH_3 + H_2$

If [NH₃BH₂NH₃]⁺[BH₄]⁻ is an intermediate, should see it by in-situ solid state ¹¹B NMR

¹¹B NMR 800 MHz Ammonia Borane

Nucleation seeding

Nucleation seeding of solid AB enhances rate of H_2 release.

a) Heat AB for 1000 minutes to synthesize 'seeds'

b) Mix seeds with fresh AB

c) Heat AB mixture decreased induction time

What is the nucleation step? We must know this to better control rates of H₂ evolution!

Solid state AB energetics

- Intermolecular reaction of AB leads to H₂ in the solid state
- Diammoniate is important intermediate
- Rates of H₂ release can be controlled in the solid state
 - Enhance kinetics with nucleation seeding or scaffold

 $AB \rightarrow (NH_2BH_2)_n + H_2$

Role of dihydrogen bonds in H₂ release:

Use neutron scattering (INS and QENS) methods to study properties of H-rich materials.

Pacific Northwest National Laboratory U.S. Department of Energy 9

*Klooster, et. al. JACS, 1999, 121, 6337

Inelastic neutron scattering

¹¹BH₃NH₃ Vibrational spectra

FDS provides approach to measure low frequency vibrational modes due to intermolecular interactions

Experimental data to bench mark theory

To facilitate identification of modes use selective D/H labeling to 'hide' transition.

Vibrational studies of dihydrogen bonding

Computational analysis of dihydrogen bonding

		Calculations on AB dimer (MP2)			FDS spectra at 10K			
		linear	cyclic			(tentative assignments)		
motion	mode	NH3BH3	NH3BH3	ND3BH3	NH3BD3	NH3BH3	ND3BH3	NH3BD3
molecular rock		52				59	64	53
rock		74				75	81	69
bend	Au		93	86 [-7]*	84 [- 9.5]	94 (+1)	87 [-8]	89 [-5]
						110		105
torsion	Bg		132	101 [-23]	117 [-11]	129 (-3)	99 [- 23]	125 [- 3]
rock	Ag		150	139 [- <mark>8</mark>]	141 [-7]	152 (+2)	135 [-11]	147 [- 3]
torsion	Au		193	142 [-26]	168 [-13]	180 (-13)	158 [-13]	170 [-6]
stretch	Ag	122	204	201 [-2]	191 [-6]	211 (+7)	198 [-6]	202 [-4]
rock	Bu		242	224 [-7]	218 [-10]	261		218 [-17]
						(+19)		
torsion	Au	256	295	283 [-4]	241 [-18]	298 (+3)	269 [-10]	253 [-15]
						327		
torsion	Bg	284	327	304 [-7]	265 [-19]	350	317 [-10]	275 [-22]
	5					(+23)		
v(B-N)						764 (782)	725 (737)	756 (747)

δ- δ^+ **BH** ----- **HN**

NH₃BH₃ Summary

- 12 wt% hydrogen at relatively low temperatures (<400 K)
 exothermic ~ 20 kJ/mol need to regenerate by chemical pathway
- Mechanism of H₂ formation Nucleation and Growth
 Induction period can be enhanced with scaffold or seeding

- •INS provides low frequency vibrational modes to yield insight into di-hydrogen bonds benchmark theory
- •Computational approaches to understand dynamics

Future Directions

Understanding dihydrogen bonding interactions. How universal are these interactions in H storage materials?

M is electropositive (Li, Mg, Ca, Na, Al, B) Y is electronegative (N, O, P, etc.)

AB will react with itself or with other hydridic and/or protic hydrogen. E.g., $MgH_2 - H_3NBH_3 - H_2NLi$

Are thermodynamics of alternative reactions more favorable?

Contributors

<u>PNNL</u>

Nancy Hess Anna Gutowska Yongsoon Shin Liyu Li Chun Lu Shari Li Scott Smith Bruce Kay Ashley Stowe

Abhi Karkamkar Dave Heldebrant Maciej Gutowski Don Camaioni Greg Schenter Jun Li Venci Parvanov Shawn Kathmann John Linehan Wendy Shaw Andrew Lipton Paul Ellis Jesse Sears

Visitors

Benjamin Schmid (UO) Mark Bowden (IRL) Rene Schellenberg (TUBF) Rebecca Lowton (Oxford)

LANSCE

Luke Daemen Thomas Proffen Monika Hartl

NCNR

Craig Brown Terry Udovic Teresa Jacques Eugene Mamontov

FSU

Naresh Dalal Ozge Gunaydin-Sen

R Achey