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• Structural changes at elevated 
temperatures involve changes in 
composition.

• Such changes require diffusion.
• Thus: Diffusional processes play a 

major role in
- Heat treating and processing
- Degradation at elevated temperatures
- ...

1. Introduction
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TBCs: Multi-functionality
through Multi-layer Design
TBCs: Multi-functionality
through Multi-layer Design

≤1050°C

~1150°C 
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Load Bearing at High Temperature
Internally cooled superalloy
optimized for structural function

Supply Al to sustain TGO formation
Surface alloy containing aluminide
phases:  β (+γ’ or γ)

Oxidation Protection
Adherent, thermally grown oxide: Alumina

Thermal Insulation
Low conductivity porous oxide with suitable 
mechanical and chemical integrity: 7YSZ
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2. Basics
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The value of the flux depends on 
frame of reference:
• Crystal lattice (lattice-fixed frame of 

reference)
In a binary system A – B we can evaluate 
JA and JB.

• Net flow of atoms: Jtot= JA + JB≠0
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A is the dependent 
concentration variable

Flux of A Concentration 
gradient of B
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Boltzmann–Matano geometry for a diffusion couple
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It appears as A and B only exchange 
places.
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:tcoefficien diffusion one Only
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We thus find:
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The D´ coefficients are called 
individual diffusion coefficients.
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Change of dependent concentration variable:
Binary system A - B
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Diffusion coefficients and dependent concentration 
binary systems Fick´s law :

Ax  dependent variable Bx  dependent variable relations
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Chemical potential and force
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Ideal solution or dilute 
solution:
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Radioactive isotopes ”tracers” added in very low amounts
fullfill this condition.

RTDM BB /*=

Tracer  diffusion coefficients give 
approximately mobilities to be used also when 
there is a driving force.
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Summary - basics

• Fick’s first law
• Value of flux depends on frame of 

reference – different diffusion coefficients
• Lattice-fixed frame – individual
• Number-fixed frame – chemical, interdiffusion

• Gradient in chemical potential a force to 
move species

• Relation between diffusion coefficient, 
mobility and thermodynamics

• RT M = D*
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3. Multicomponent systems and 
coupling effects

Main difference compared to binary systems:  
diffusion is coupled due to several reasons

∑ ∂
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cDJ k
kk ∂
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Coupled diffusion.

Lars Onsager
Nobel prize in Chemistry 1968
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Reason for coupling effects

• Thermodynamic interactions
• Frame of reference
• Correlation effects
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Example:Fe-Si-C ”Darken effect”

Si-rich steel

Si-poor steel
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Ternary system Fe-Si-C:
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Coupling due to Frame of Reference
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Defined by:
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Number fixed frame of reference:

'...')1(' CCBBAAB JxJxJxJ −−+−=

I.e. the flux of B will depend on the flux of A and C!

Coupling in one frame of reference but not in another.
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Coupling due to correlation 
effects
• If the diffusive jumps are not 

independent but jumps correlated.
Tracer diffusion jumps are uncorrelated
Diffusion in chemical potential gradients 

jumps correlated – vacancy wind.

• Small effect – difficult to estimate.
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Onsager’s generalization of 
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Assume generally:
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Classical examples of cross effects

FickVolta
(galvanic 

cell)

DufourChemical 
potential 
gradient

Electro
migration

OhmPeltierVoltage

Soret
Thermal 
migration

SeebeckFourierTemperature
gradient

DiffusionElectricHeatFlux

Force

∑= ikik FLJ
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Vector-matrix notation
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Change in frame of reference
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Another interesting choice of 
processes
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Onsager reciprocal relations 
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The reciprocal relations have been 
controversial but seem accepted.

• The relations are claimed to be very 
useful because:
- Consistency check of experimental data.
- More efficient use of experimental data.

• But: Are they true? 
• If they are true, are they trivial? Do they 

lead to any consequences?
• Perhaps they are true but physically 

meaningless?
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Experimental evidence:
• Many investigations over the years 

confirm reciprocal relations, e.g.
- Diffusion in ternary aqueous solutions of 

salts (e.g. Miller 1960, Wendt and 
Shanim 1970)

- Diffusion in ternary alloys (Ziebold and 
Ogilvie 1967)

- Electro-osmosis (Beddiar et al. 2002)

• Some investigations confirm with a 
”but...”
- Diffusion in ternary alchohols and 

hydrocarbons (Medvedev and Shapiro 
2003)
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Difficult to test reciprocal 
relations in diffusion:

D=LΨ L=D Ψ-1

• Precise evaluation of multicomponent 
diffusion coefficient matrix needed.

• Good thermodynamic descriptions 
needed, i.e. second derivatives of the 
Gibbs energy as function of 
composition.
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Summary - Multicomponent 
systems and coupling effects

• Fick’s first law contains coupling 
coefficients.

• Coupling stems from
- Thermodynamic interactions
- Frame of reference
- Correlation effects

• Vector matrix notation convenient 
• Use gradients in thermodynamic potentials
• Entropy production
• Onsager reciprocal relations
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4. Diffusion models
• The dominating diffusion mechanism in metals, 

intermetallic and ionic crystals is an atom or ion 
exchanging place with a vacancy.

• The probability for a thermally activated ”jump”
of an atom to neighboring vacant site is given by

where ∆G is the change in Gibbs energy caused 
by jump and k is Boltzmann’s constant.

)/exp( kTGp ∆−=
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If there is a driving force ∆G will be different in
the two directions.
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Assume random mixture of vacancies in thermal
equilibrium, i.e. 

The probability that a site is vacant

0==
∂
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Net flux of atoms (in lattice-fixed frame):
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Net flux of atoms in the limit of low
Driving forces:

zRTRT
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VaBB ∂
∂
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⎞
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⎛ ∆
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2

BM
The mobility!
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For interstitial B the fraction of vacancies is
usually large and known from composition

zRTRT
GycJ BB

VaBB ∂
∂

⎟⎟
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⎞
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⎝

⎛ ∆
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µνδ 1exp
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The mobility!
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behaviour! Arrhenius

have or   then dependence etemperatur

linear  a has   and constant   If

BVaB

B

MRTMRT
G*2 ∆νδ
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Magnetic ordering

Para-ferromagnetic
transition in pure Fe
at TC. Non-Arrhenius
behaviour.

TC
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Chemical ordering

800

1000

1200

1400

1600

1800

2000

TE
M

PE
R

A
TU

R
E_

K
EL

VI
N

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

MOLE_FRACTION NI

B2
γ’(L12)

Al-Ni



Industrial Engineering and 
ManagementIndustrial Engineering and Management 50

Summer School on
Advanced Thermostructural
Materials
UCSB Aug 7-18, 2006

Cu-Zn
(Cuper at al. 1956)
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A single jump creat a defect
in a highly ordered structure.
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Girifalco (1964)
Do not look at the microscopic behaviour.
Look at the statistical behaviour!

BAksQQ

A,BA,B

k
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kk ,),1( 2 =+= α
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s y yB B= −' ''



Industrial Engineering and 
ManagementIndustrial Engineering and Management 53

Summer School on
Advanced Thermostructural
Materials
UCSB Aug 7-18, 2006

B2

Fe-Al

A2
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Interdiffusion
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Al-Fe-Ni
Helander and Ågren
1999
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Al-Fe-Ni B2
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Al-Fe-Ni B2
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Ionic systems

More complicated because:
Complex phases
Complex defects

- defects that do not change composition
- defects that change composition

Electroneutrality
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Requirements on driving forces:

• Should represent uncharged quantities
• be independent

Two relations: The 4 driving forces in 
present case may be reduced to 2 
independent driving forces.

Many possibilities!
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Summary - diffusion models

• Vacancy mechanism in metals, intermetallic and 
ionic crystals.

• Absolute reaction rate theory gives flux 
proportional to force and Arrhenius behaviour.

• Magnetic and chemical ordering yield a deviation 
from Arrhenius behaviour and increased 
activation energy with increased ordering.

• Ionic phases complex because complex defect 
structures. One needs to conisder
- Electroneutrality
- Charge transfer
- Complex relation between mobility and tracer 

diffusivity
- Doping of ions with different valrncy has a strong effect
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70-30 Brass

2.5mm Mo wires
0.13mm diameter

Cu

h(t)

Schematic of the Smigelskas–Kirkendall diffusion couple

tK−=− h(0)h(t)

It seems as the Mo-wire has moved!

Cu

5. Kirkendall effect
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In lattice-fixed frame of reference a net flow of 
atoms. In a frame of reference with no net-flow 
(number-fixed) the lattice points (the markers) thus 
appear to move.

( ) ( )

zV
xMMJJ

z
x

z
x

zV
xM

zV
xM

z
x

V
DD

z
x

V
DDJJ

B

m

B
ABBA

B
B

A
A

B

m

B
B

A

m

A
A

B

m

A
BB

A
AB

B

m
ABBA

∂
µ∂

∂
µ∂

∂
µ∂

∂
µ∂

∂
µ∂

)(0

1''1''

''

''

−−=+⇒=+

−−=

∂
∂

+−=
∂
∂

−−=+

:Duhem-Gibbs

:atoms of flow-Net



Industrial Engineering and 
ManagementIndustrial Engineering and Management 68

Summer School on
Advanced Thermostructural
Materials
UCSB Aug 7-18, 2006

Kirkendall velocity (velocity of 
lattice planes in number-fixed 
frame
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Ti-Zr: Daruka  et al. 1996
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Z’ position of a given lattice plane 
(or markers fixed to that plane) relative
number-fixed frame. 

z
xDDtzJVtZvdtdZ B
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Lattice plane velocity Lattice plane position

Matano
Matano

Kirkendall
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The Kirkendall plane is the lattice plane corresponding
to the original joint.

It is the only lattice plane that moves parabolically
relative the Matano plane. 

Lattice plane velocity

Matano

Line with slope 1/2

Kirkendall plane
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Interdiffusion coefficient in NiAl-B2
(Helander and Ågren 1999)

Example:
Kirkendall effect  during 
oxidation of NiAl B2
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Al diffusion fasterNi diffusion faster

Ratio between tracer diffusivity of Ni and Al in Al-Ni B2
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Oxidation of NiAl at 1050°C

• Simplified treatment: Mole 
fraction Al on metal surface 
kept constant (~0.40, from 
EDS at CTH)

• No diffusion in oxide!
• Assessment of mobilities in 

NiAl made by Helander and 
Ågren.

(Hallström et al. 2006)
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Oxidation of NiAl at 1050°C

• Vacancy flux in lattice fixed 
frame of reference

• Negative sign means ”toward 
the oxide”.

• Accumulation of vacancies 
towards oxide!
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Oxidation of NiAl at 1050°C

• Integrated vacancy 
volume flux => pore 
volume per square 
meter of metal surface
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Svensson, Petrova and Stiller 2006:
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Kirkendall effect as a cross effect 
of interdiffusion
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Kirkendall effect during interdiffusion 
between two polysterene films 
with different chain lengths 
(Kramer et al. 1984).

Thermal migration: Kirkendall effect
caused by heat flow?

Electromigration: Kirkendall effect
caused by electric current? 

170 °C

Very general effect!
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Summary – Kirkendall effect

• Unequal mobilities of different elements 
yield a net flow of atoms.

• Net flow of atoms will give porosity, 
stresses or deformation.

• In a diffusion couple the Kirkendall plane of 
the initial joint is the only lattice plane that 
moves parabolically.

• Kirkendall effect may give porosity at 
TGO/BC interface during growth of TGO.

• Kirkendall effect is a cross effect of 
interdiffusion.
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6. Multi-phase diffusion couples

• Gibbs phase rule and diffusion
• Virtual and real diffusion path
• Diffusion in dispersed systems – effective 

diffusivity
• Different types of planar interfaces
• Internal – external oxidation
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Gibbs phase rule and diffusion couples

• The number of degrees freedom f is the number of 
pontials that can be varied independently:

f = 2+c-p 

At given P and T: f = c-p 

Binary system c = 2 and for one-phase system 
(p=1):
f = 1; 1 independent chemical potentials gradient. 
two-phase system (p=2): f = 0, No independent 
chemical potential gradient. No diffusion possible. 

Diffusion only possible if supersaturation has been 
created at a different temperature.
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βα δ γ

In a binary diffusion couple which is heated
isothermally we can only form layers of
different phases.
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Example: Oxidation or nitriding of pure
metal: Only external layer possible!

Nitriding of pure Fe

ε
γ

γ’

α

Gas Metal
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Ternary system c = 3 and for one-phase system 
(p=1):
f = 2; 2 independent chemical potentials gradient. 
Two-phase system (p=2): f = 1, 1 independent 
chemical potential gradient. Diffusion possible in a 
two-phase mixture. 

γγ γ+βγ+β
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Internal oxidation
of Fe-Mn-Al-C
(Perez et al.)
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Virtual and real diffusion path

Both alloys in γ phase but
diffusion path in two-phase 
field.

Virtual path because no
precipitation of β phase.
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Real diffusion path
in two-phase field.

Precipitation of β taken 
into account.
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Carburizing of Ni-30%Cr alloy
Engström et al. 1994
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Diffusion in dispersed systems –
effective diffusivity

Assumptions:

Diffusion takes place in 
the matrix phase only.

Equilibrium holds locally 
in each volume element.

Carburisation of high-temperature
alloys
Internal oxidation

Interdiffusion in composite materials
coating/substrate systems
weldments between steels
joints of dissimilar steels

Gradient sintering of cemented
carbide work-tool pices
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Diffusion path

Transformation matrix = δij
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Zig-Zag diffusion path in two-phase field!
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γγ γ+βγ+β
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Different types of planar interfaces
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Oxide
B1O1

O-2

B+2

Internal and external oxidation

O2
B Metal

Pure B
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uA

uO

aO at surface

No ox

B B1O1

Oxidation without 
B diffusion possible

Binary alloy A-B
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Oxygen diffusion in both oxide and metal
stabilises the planar front (external oxidation).

B supersaturation destablizes planar front (internal
oxidation).
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Oxidation without 
B diffusion possible
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Summary – multiphase diffusion 
couples
• In contrast to binary diffusion couples, 

where interdiffusion only yields new 
phases as layers parallell with the initial 
joint, multi component systems may give 
dispersed phases.

• Virtual and real diffusion path.
• Real diffusion path i zig-zag in a ternary 

two-phase system.
• Can be understood from effective model.
• Internal versus external oxidation.


