

TOACE RESEARCH LABORATOR

Integrity ***** Service ***** Excellence

Tutorial FIJI (FIJI is ImageJ)

Michael Uchic AFRL/RXCM

- Introduction
- Overview of FIJI/ImageJ Functionality

- Emphasis on filters and techniques useful for serial sectioning data post-processing

- Examples
- Q&A

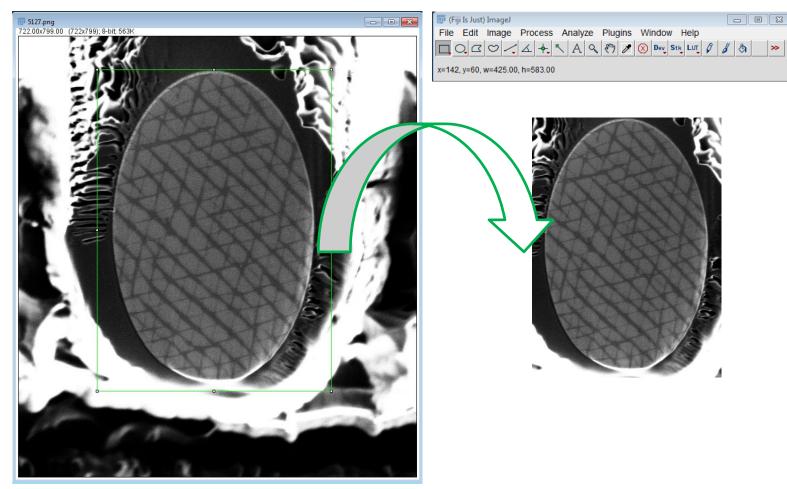
- FIJI (and ImageJ) = Image processing package
 - GUI enables quick prototyping
 - FIJI has lots of plug-ins to assist with 3D data analysis
- Open source (GNU) built off of ImageJ2 (BSD)
 - Java
 - Actively developed
- Close collaboration with other SciJava/open microscopy tools

- Core code is robust; comparatively fast execution
- FIJI has <u>very effective</u> filter suite for data post-processing, esp. for common 3D tasks
 - Extensive suite of scripts/plug-ins developed by scientific community
- Macro language enables rapid construction of automation workflows
- Wide proliferation enables sharing/verification of workflow
- Open source enables insight into algorithm construction

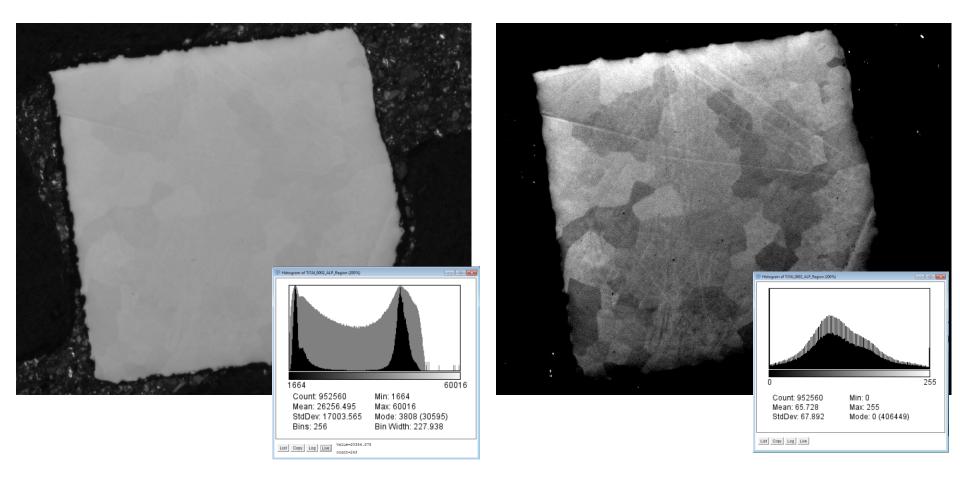
- Importing Image Stacks
- Crop/Resizing
- Image Restoration
 - 3D Kernel Operations
- Histogram Adjustment
- Applying Threshold
- Interactive Stack and 3D Viewing

Importing Image Stacks

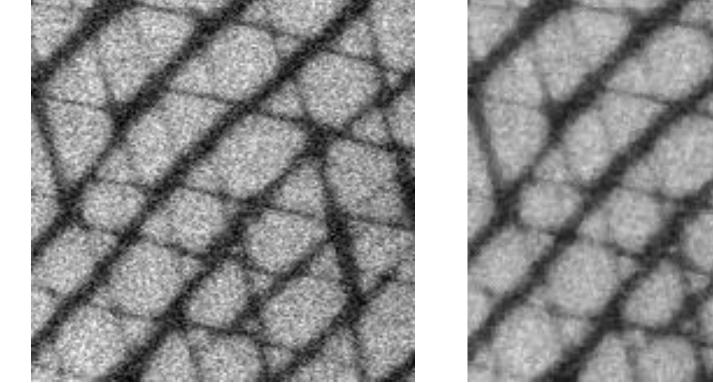
	Image Sequence		Sequence Options	×
	Raw		10	
	LUT			
🗊 (Fiji Is Just) ImageJ	Text Image		Number of images:	234
File Edit Image Process A	Text File			
New +	Results	8 8 >>	Starting image:	1
Open Ctrl+O	Table		i i i i i i i i i i i i i i i i i i i	4
Open Next Ctrl+Shift+O	URL		Increment:	1
Open Samples	Stack From List		Scale images:	100 %
Import	TIFF Virtual Stack		Scale Images.	70 70
Close Ctrl+W	AVI		File and a sector of the	
Close All	XY Coordinates		File name contains:	
Save Ctrl+S	Analyze			(in normal)
Save As	Open [Image IO]		(enclose regex	(in parens)
Revert Ctrl+R	Open with preview			
Page Setup	DF3		Convert to 8-bit 0	Grayscale
Print Ctrl+P	FIB-SEM		Convert to RGB	
Quit	MRC Leginon		ConventionCob	
Make Screencast	PDF		Sort names num	nerically
	Extract Images From PDF		🗖 Lies virtual staak	
	DAT EMMENU		Use virtual stack	
	DM3 Reader			
	TorstenRaw GZ Reader		1024 x 884 x 234 (2	202.0MB)
	Nrrd			
	ICO		ок с	Cancel Help
	lcns			Jancer Heip
	SVG			
	LSS16			
	IPLab Reader			
	Animated Gif			
	Bio-Formats			


Helpful to have numeric ordering of image stack

Crop/Resizing


Works on stacks as well as individual images

Histogram Adjustment


Works on stacks as well as individual images

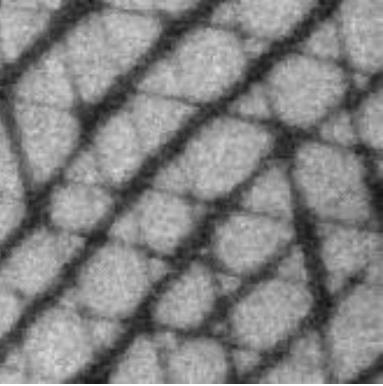
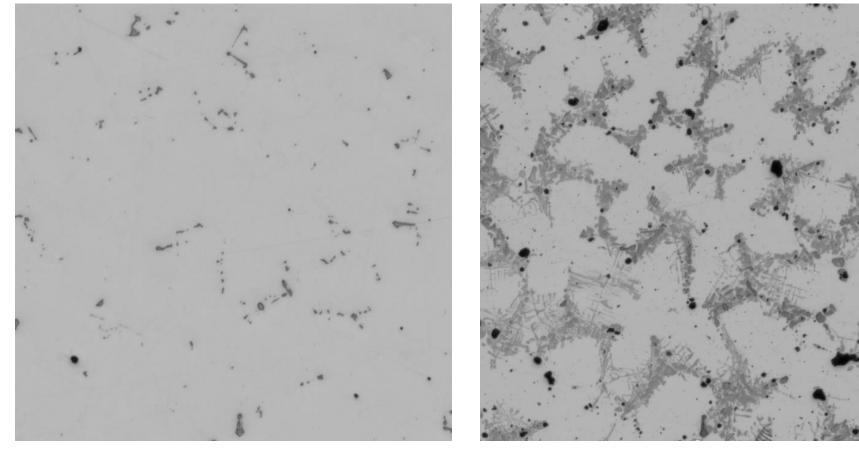


Image Restoration

Original Image

3D Median (3 x 3 x 3 pixel kernel)


3D kernel operations can be readily performed

Z-stack projection

Single image from sectioning experiment

MIN Z-projection thru 300 sections

Effective for feature enhancement, removing some artifacts

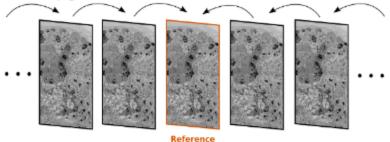
Image Stitching

http://fiji.sc/Grid/Collection_stitching

- Reconstruct big image stacks—arbitrary spacing
- Pair-wise registration to sub-pixel resolution (FFT)
- Global optimization scheme to minimize propagating alignment errors

$$\arg\min_{T_{VF}} \sum_{A \in V \setminus \{F\}} \left(\sum_{B \in V \setminus \{A\}} \|\vec{t}_{BF} - \vec{t}_{AF} - \vec{p}_{AB}\|^2 \right)$$

- Fusing options (blending); new tile coordinates also output
- S. Preibisch, S. Saalfeld, P. Tomancak (2009) "Globally optimal stitching of tiled 3D microscopic image acquisitions", *Bioinformatics*, **25**(11):1463-1465.


Stack Registration

http://fiji.sc/Register_Virtual_Stack_Slices

Register Virtual Stack Slices

QR for this page

This plugin takes a sequence of image slices stored in a folder, and delivers a list of registered image slices (with enlarged canvas). One of the images in the sequence can be selected by the user as **reference** and it will remain intact.

The plugin can perform 6 types of image registration techniques:

- Translation
- · Rigid (translation + rotation)
- · Similarity (translation + rotation + isotropic scaling)
- Affine
- · Elastic (via bUnwarpJ with cubic B-splines)
- · Moving least squares

All models are aided by automatically extracted SIFT features.

Register Virtual Stack Slices (Fiji)AuthorAlbert Cardona (acardona@ini.phys.ethz.ch @),
Ignacio Arganda-Carreras and Stephan SaalfeldMaintainerIgnacio Arganda-Carreras (iarganda@mit.edu @)Sourceon GitHub @Initial release2008Latest version2.0.0, September 17th, 2014Developmentstable, active

status

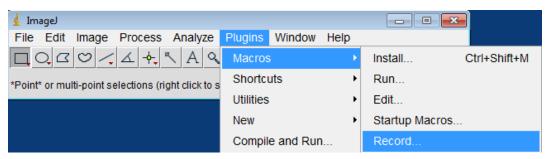
Category

Registration

Use of SIFT (keypoint detection): Scale & Rotation Invariant Matching

Macro

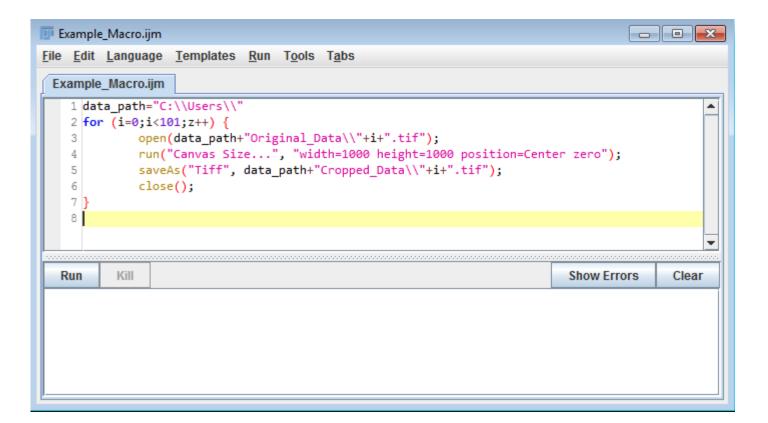
Why Macros?


Macros can be used to

- · automate repetitive tasks
- · document what you did
- share common procedures
- · add tools to the toolbar
- add keyboard shortcuts

Please be aware that there are several other available scripting languages that are more powerful than macros, too! See the sidebar on the right.

• Record/Edit/Run options simplify macro construction



Macro

http://fiji.sc/Introduction_into_Macro_Programming

• Example of Macro for Stitching Serial Sectioning Data

Citing SciJava Projects http://imagej.net/Citing

Project	Citation	Google Scholar
ImageJ	Schneider, C. A.; Rasband, W. S. & Eliceiri, K. W. (2012), "NIH Image to ImageJ: 25 years of image analysis &", Nature methods 9(7): 671-675, PMID 22930834 &.	on Google Scholar 🗗
Fiji	Schindelin, J.; Arganda-Carreras, I. & Frise, E. et al. (2012), "Fiji: an open-source platform for biological-image analysis a", Nature methods 9(7): 676-682, PMID 22743772 a.	on Google Scholar 🗗
ImgLib2	Pietzsch, T.; Preibisch, S. & Tomancak, P. et al. (2012), "ImgLib2—generic image processing in Java 🕼", Bioinformatics 28(22) : 3009-3011, PMID 22962343 🖗.	on Google Scholar 🗗
lmageJ2	Rueden, C., Schindelin, J., Hiner, M., DeZonia, B., Kamentsky, L. & Eliceiri, K. (2015). ImageJ2 [Software]. http://imagej.net/ 2.	-
SciJava Common	Rueden, C., Schindelin, J., Hiner, M. & Eliceiri, K. (2015). SciJava Common [Software]. http://scijava.org/ 🗗.	-
SCIFIO	Hiner, M., Rueden, C. & Eliceiri, K. (2015). SCIFIO [Software]. http://scif.io/ 🗗.	-
ImageJ OPS	Rueden, C., Dietz, C., Horn, M., Schindelin, J., Northan, B., Berthold, M. & Eliceiri, K. (2015). ImageJ OPS [Software]. http://imagej.net/OPS 2.	-
Other	Browse the list of citable software and publications using Fiji for additional citation information.	-

Helpful Web Resources

- FIJI <u>http://fiji.sc/Category:Tutorials</u>
- ImageJ Documentation Page <u>http://rsbweb.nih.gov/ij/docs/index.html</u>
- University of Chicago Integrated Microscopy Core ImageJ Site (C. Labno) <u>https://digital.bsd.uchicago.edu/ImagejandFijiHelp.html</u>

- Open-source, robust software for image processing
- Plug-ins very good for key 3D tasks (stitching, alignment)
- Macro language simplifies task automation

