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3 DREAM.3D: FFT output 



4 Outline: Status 
§  Mathematical basis for MASSIF aka the “FFT method”, which 

discretizes a microstructure on a regular grid in order to use Fast 
Fourier Transforms to solve the (partial) differential equations for stress 
equilibrium. 

§  Wide range of applications of a spectral method to calculating 
microstructure-property relationships in polycrystals using Green’s 
functions and Fast Fourier transforms (FFTs). 

§  The method was originated by Moulinec & Suquet (for elastic loading) 
with a focus on composite materials (in turn based on work by Kröner); 
it was further developed by Lebensohn (for viscoplastic deformation) 
with a focus on polycrystalline materials (metals, ceramics, ice). 

§  Rollett’s group adopted the FFTW package and made it MPI parallel 
(within FFTW).  An alternative parallel FFT scheme (3d instead of slab) 
is also available, based on work by Yang Wang (PSC). 

§  Recent developments include thermoelastic, elasto-viscoplastic and 
dual grid (e.g. void growth); Roters and Eisenlohr have incorporated 
the FFT as a solver inside FE (http://damask.mpie.de). 



5 Status, Big Data, RVE, Validation 
§  Availability of the MASSIF (FFT) code(s): on request to lebenso@lanl.gov, 

rollett@cmu.edu. 
§  Scalability:  

– The computational part of the runtime scales as well as the FFT i.e. 
nearly linear in the number of gridpoints. 
– (Thermo-)Elastic calculations are fastest. 
– Viscoplastic calculations require more time because of the need to solve 
a 5x5 non-linear equation to get slip rates (each gridpoint, each step, each 
iteration). 
– Elasto-viscoplastic calculations require yet more time because of the 
need for small strain increments (at least through yield). 

§  Potential connection to big data: although not yet exercised, every reason 
to expect to be able to iterate back and forth with Dream3D to design 
microstructures and test their micromechanical response. Depending on 
domain size, step count etc., rapid accumulation of data. 

§  Domain size: appears to be small (as a number of grains) for elastic, much 
larger for viscoplastic. 

§  Validation against experimental data: for both FFT and FE with crystal 
plasticity, this is not complete. 



6 Topics, 
Examples 

§  Misorientation development in 
polycrystalline copper: 2D (from EBSD) 
and 3D (from HEDM) comparisons. 

§  Elastic response of low volume fraction 
foams. 

§  Stress hot spots during (visco-)plastic 
deformation in relation to 
microstructure. 

§  Analysis (elastic) of twinning in tensile 
deformation of Zr polycrystal. 

§  Dependence of strain (rate) distribution 
in a metal-metal composite with hard 
particles in a soft matrix, motivated by 
studies of W-Ni-Fe. 

•  Use of the thermoelastic (eigenstrain) method for computing stress fields between dislocations 
•  Analysis (thermoelastic) of stress concentration in thermal barrier coatings and the role of 

interface roughness 
•  Analysis of plastic deformation in ice 
•  Analysis (thermoelastic) of driving forces for whisker growth from thin films. 
•  Fatigue crack initiation – comparison with SEM, EBSD, HEDM data. 
•  Comparisons with crystal plasticity finite element calculations. 
•  Analysis (elasto-viscoplastic) of a shock experiment leading to incipient spalling in copper. 



7 
Voids from Post-Shock Image 

Image of the surface of a 
polycrystalline Cu sample 
subjected to a mild shock; 
resulting voids superimposed on 
image.  Elastoviscoplastic FFT 
being used to obtain 
micromechanical fields and learn 
about void nucleation. 

Evan Lieberman, David Menasche, Bob Suter, 
Ricardo Lebensohn, Curt Bronkhorst, Ed 
Kober, ADR 



8 Microstructure-Property Simulation with FFT 

Periodic Simulation Domain 

Faster than FEM for large problems (order N 
log[N]) 
 
Requires periodic boundary conditions 
 
Proposed by Moulinec & Suquet for linear (1994) 
and non-linear composites (1998) 
 
Extended by Lebensohn for viscoplasticity  
for polycrystals (2001), on a suggestion by 
Canova about using FFTs 
 
Solving Stress Equilibrium 
 

        → Elasticity 
 

        → Viscoplasticity 
 

€ 

ε (X f ) and σ (X f )

ε
•

(X f ) and σ (X f )

Moulinec & Suquet, Comput. Methods Appl. Mech. Engrg. 157 69-94 (1998). 
Michel, Moulinec & Suquet CMES-Comput. Mod. Eng. Sci. 1 79-88 (2000).  
Lebensohn, Acta Mater. 49 2723-2737 (2001); Acta Mater. 56 3914-3926 (2008). 
Rollett, et al., MSMSE, 18 074005 (2010); Anglin et al., Comp. Matls. Sci. 87 209 (2014). 
Lebensohn et al., Intl. J. Plasticity, 32-33, 59 (2012). 



9 
Advantages & Disadvantages of the FFT Method 

§  Caveat: intended for materials problems, not for solving problems with load-
bearing structures.  FE widely understood whereas FFT approach ~unknown. 

§  Advantage: no need to make a mesh.  3D meshes, especially conforming to 
microstructure notoriously time consuming and difficult to make a mesh that is 
free of element quality problems.  Nevertheless, commercial solutions exist, e.g., 
Simpleware (also Jessica Zhang, MechE/CMU). 

§  Advantage: direct instantiation with 3D images from serial sectioning, 3D x-ray 
microscopy, or other sources. 

§  Drawbacks: periodic structure required in at least one direction out of three;  With 
buffer zones, however, many materials testing situations can be modeled. 

§  Advantage: model microstructures can be easily generated, enabling 
microstructural design to be investigated. 

§  Elastic and viscoplastic versions of the model have been devised to date: an 
elasto-plastic model has been developed and published.  A thermo-elastic 
version has been published. A dual grid version exists (Fourier & material grids). 

§  Comparisons to Finite Element method calculations show good agreement.   
§  Advantage: Time required for equivalent calculation is much less for the FFT 

method, thanks to the Nlog(N) scaling.  E.g., for 10 millions degrees of freedom, 
viscoplastic, vpFFT requires of order 1/10th time as FE (with crystal plasticity). 



10 Finite Element vs. FFT (verification) 

Fcc 
Rolling to 40% 

See also: 
Eisenlohr et al., IJP 46 37-53  (2013) 



12 Inputs 
§  Any code that computes micro-mechanical fields needs to know: 

– what type of calculation (elastic, thermoelastic, viscoplastic …) 
– boundary conditions (type of strain to be imposed, magnitude …) 
– materials properties (elastic moduli, slip systems, twinning …) 

§  The (FFT) image-based method, not surprisingly, needs an image 
of the material (as opposed to a mesh).  Think of sampling the 
material on a regular grid (uniform point spacing).  Each gridpoint 
can be a different material but, in practice, we are interested in 
gradients across bulk features (grains, particles, lamellae …); 
therefore apply the rule of thumb that 10 points across a feature of 
interest. 

§  For the FFT codes, there are 3 input files:  
i) the image (generally 1 line per gridpoint with orientation + grain 
ID + phase ID);  
ii) the constitutive properties (e.g. fcc.sx);  
iii) the control file (e.g. options.in, fft.in). 



13 
Outputs 

§  Any code that computes micro-mechanical fields outputs many 
different files, generally one (set of) file(s) per field, as well as 
average quantities over the simulation domain.  Thus the FFT 
codes output the following (non exhaustive!): 
– stress+strain history 
– error/convergence history 
– orientation field (tex files); generally include von Mises σ & ε. 
– stress tensor field (sfield files) 
– strain tensor field (dfield files) 
– stress gradient, scalar 
– orientation gradient, scalar, kernel average misorientation 
– packaged sets of fields as VTI or VTK files for immediate 
viewing in Paraview 



14 
Post Simulation Analysis; 3D Viewing 

§  Many researchers write their own post-simulation analysis tools. 
§  FFT2dx is one such program that converts certain output files to 

Paraview inputs (below) and computes derivative fields (e.g. 
orientation gradients, principal stresses from eigenanalysis). 

§  There are many software for viewing objects, fields etc. in 3D  
§  Paraview is an open source package that is supported by the 

DOE Nuclear Defense Laboratories; it has proven to be 
sufficient for most of our needs. 

§  There is substantial scope for improving and streamlining the 
output.  For example, output to a single HDF file with a helper 
file for Paraview. 

§  Avizo and Fiji are useful for analyzing Computed Tomography 
data, for example. 
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vpFFT/ pvpFFT/ teFFT/ pteFFT code and input 

This guide steps through the files required in order to run the parallel version of Ricardo 
Lebensohn’s code.  Please note that you should not give the code to anyone else without 
first consulting with both myself and Ricardo Lebensohn since it is still a “research code” that 
is under development.  Ricardo is willing to collaborate under any reasonable request but 
this code is not yet ready to be distributed in manner, for example, in which VPSC is 
distributed.  No formal licensing statement is included at present although the code is 
registered at Los Alamos and has a release number. 
  
0. The Fourier grid is a regular grid of points.  The data files are always written with x varying 
fastest and z slowest.  As mentioned above, the coordinates of the points are implicit.  The 
index for each point is given as 3 integers (see above) so, in principle, the points could be 
listed in any order.  A few of the subroutines check this but not all.  In order to compute the 
real space coordinates, you must take account of the grid shape as given by the deformation 
gradient at the top of the input/output files.  You will have to be particularly careful if you 
examine simulation results with shear deformations.  Eventually we will implement a dual 
grid method in which the second grid tracks variable strain/displacement at each material 
point (and material properties are interpolated back to the Fourier grid, which must remain 
regular). 



16 
vpFFT input: 2 

1. You need a copy of the code.  The best way to get it is to get access to 
our repository at CMU and use “git” to clone a copy.  Otherwise, ask me 
(Rollett) for a tarball.  It comes with a Makefile, which has various possible 
compilation targets built into it.  We have run it on a variety of Macs, linux 
systems and large supercomputers (notably hawk, blacklight and hopper). 
2.  You need an image of the microstructure that you want to use as the 
starting point or instantiation of the simulation.  The dimensions of the grid 
(see the next section) must be a power of two* in all three directions in 
order to use discrete Fourier transforms in a direct fashion.  The image file 
(ascii text) has one line per grid point with NO header line.  The Euler 
angles (Bunge convention) are given, in degrees, in columns 1-3.  The 
coordinates of each point (integers, not real space) are specified in 
columns 4 through 6.  Column 7 is the grain number and column 8 is the 
phase number.  There is no limit on the number of grains.  The current 
limit on the number of phases is 3, but you could increase that by 
changing the size of certain arrays inside the code (check with me if 
uncertain). 

* The parallel version uses FFTW (as opposed to Numerical Recipes) 
and this package permits arbitrary dimensions. 



17 
vpFFT input: 3 

3.  You will find a control file called options.in as part of the tarball.  
[Some explanations provided for the entries in options.in] 



18 
vpFFT: options.in 1 

# options.in!
!
# parsing conventions: !
# --[flag] [options]!
# flag order does not matter!
# conventional whitespace does not matter!
# comments can begin with either # or !!
!
# note : command line arguments supercede these settings!
!
--numphases 2  !
--phase 0 Zrpl.sx Zrel.sx!
--phase 1 dummy.sx dummy1.sx!
#--phase 0 thermelast-ADR2.dat!
!
# uncomment to enable!
!--multiple_file_input image!
--verbose!
!--binary!
!--time_stamp!
!--no_directory_creation!
--output_prefix Zr_100step-!
!
# npts1 npts2 npts3 number of Fourier points (must be npts1*npts2*npts3)!
#--dimensions 128 128 128 2097152!
#--dimensions 64 64 64 262144!
#--dimensions 32 32 16 16384!
--dimensions 512 512 64 16777216!
!
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vpFFT: options.in 2 # Y1 Y2 Y3 (one per line)!

--direct_space_base!
1.  0.  0.   !
0.  1.  0.!
0.  0.  4.!
--microstructure_file ZrFFT_512_512_64.txt!
#--microstructure_file micro32b.in!
#--microstructure_file TXFFT.txt!
#--microstructure_file sphtx.tex!
#--microstructure_file out-64x64x64.tex!
--rve_dimensions 1. 1. 4.!
# iudot: flag for vel.grad. (1:unknown-1:known) DO 
NOT CHANGE!
--iudot_boundary_condition!
    0       1       1 !
    1       0       1 !
    1       1       1 !
# vel.grad!
--udot_boundary_condition!
   -0.5      0.      0. !
    0.      -0.5     0. !
    0.       0.      1.0!
# DO NOT CHANGE!
--cauchy_flag!
    1       0        0!
            1        0!
                     0!
--cauchy_stress!
    0.      0.       0. !
            0.       0. !
                     0. !
!

--eqincr 0.0001!
# ictrl (1-6: strain comp, 0: VM eq, -1: tdot)!
#--ictrl 0!
--ictrl -1!
#--thermctrl 3!
#--deltat 1000!
!
# INFORMATION ABOUT RUN CONDITIONS!
--nsteps 100!
--ithermo 0!
--error 0.000000001!
--itmax 150!
--irecover 0   # read grain states from STRESS.IN  
(1) or not (0)?!
--isave 0      # write grain states in STRESS.OUT 
(1) or not (0)?!
--iupdate 1    # update tex & RVE dim (1) or not 
(0)?!
--iuphard 1!
!--voronoi      # turns voronoi initialization on/
off!
!--voronoi_gridsize 64!
!--voronoi_numgrains 25!
!--voronoi_nonperiodic            # default : 
periodic!
!--force_nonrandom_voronoi 55645  # each positive 
number corresponds to !
                                 #   a 
deterministic voronoi structure!
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vpFFT: options.in 3 

!--voronoi_cushion 32             # parallel: will search for seeds at most!
                                 #   this far from every local domain boundary!

! ! ! ! #   not set: use default!
!--random_texture -1              # initialize texture (random mdf,odf)!
                                 #   each positive number corresponds to a !

! !                 #   deterministic grain id - orientation mapping!
! !                 #   negative: orientations chosen at random!

!--list_texture texture.wts # initialize texture using grain id - orientation!
!       ! !   #    mapping specified in this file (.wts format)!

!--angles_in_degrees       # specify list_texture input units!
!
# OUTPUT FLAGS  !
# Not output if commented.  !
# Negative : will output only after the last timestep.!
--write_fields_files_every              -1  #..timesteps !
--write_strs_strn_curve_every            1  #..timesteps !
--write_statistics_file_every           -1  #..timesteps !
--write_tex_file_every                  10  #..timesteps !
--write_stress_strain_vti_every         -1  #..timesteps !
--write_stress_deriv_magn_vti_every     10  #..timesteps!
!

These lines control which 
files are output, and the 
frequency with which they 
are written; a “-1”means 
only at the last step. 
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Constitutive Properties: elastic 

0!
  13929.   7082.   5765.   0.000   0.000   0.000 ! Ice (MPa)!
  7082.   13929.   5765.   0.000   0.000   0.000!
  5765.   5765.   15010.   0.000   0.000   0.000!
  0.000    0.000     0.000     3014.   0.000   0.000!
  0.000    0.000     0.000     0.000   3014.   0.000!
  0.000    0.000     0.000     0.000   0.000   3423.5!
1 ! ! ! ! ! !ISO!
9000.   0.33    !           ! !YOUNG(MPa),NU (V+R/2)!
!

In almost all circumstances, you should specify the full anisotropic 
stiffness modulus, as in “C”. 



22 Constitutive Properties: plastic 
SLIP SYSTEMS FOR Ti CRYSTAL 
HEXAGONAL             icryst 
   1.   1.   1.58734    90.  90.  120.         cdim(i),cang(i) 
   6              nmodesx (total # of modes listed in the file) 
   3              nmodes  (# of modes to be used in the calculation) 
   1 2 4              mode(i) active modes = prismatic, basal, pyramidal<c+a> 
PRISMATIC <a> 
  1   3   10   1.0   0.0  0           modex,nsmx,nrsx,gamd0x,twshx,isectwx 
 30.0  30.0   10.0   80.0  10.0         tau0xf,tau0xb,tau1x,thet0,thet1 
  1.0   1.0    1.0   1.0   1.0   1.0   1.0   hselfx, hlatex(1,im),im=1,nmodes 
 1  0 -1  0    -1  2 -1  0 
 0 -1  1  0     2 -1 -1  0 
 -1  1  0  0    -1 -1  2  0 
BASAL <a> 
  2   3   10   1.0   0.0  0           modex,nsmx,nrsx,gamd0x,twshx,isectwx 
 50.0  50.0   10.0   80.0  10.0         tau0xf,tau0xb,tau1x,thet0,thet1 
  1.0   1.0    1.0   1.0   1.0   1.0   1.0   hselfx, hlatex(1,im),im=1,nmodes 
 0  0  0  1     2 -1 -1  0 
 0  0  0  1    -1  2 -1  0 
 0  0  0  1    -1 -1  2  0 
PYRAMIDAL <a> 
  3   6   10   1.0   0.0  0           modex,nsmx,nrsx,gamd0x,twshx,isectwx 
 50.0  50.0   10.0   80.0  10.0         tau0xf,tau0xb,tau1x,thet0,thet1 
  1.0   1.0    1.0   1.0   1.0   1.0   1.0   hselfx, hlatex(1,im),im=1,nmodes 
 1  0 -1  1    -1  2 -1  0 
 0 -1  1  1     2 -1 -1  0 
 -1  1  0  1    -1 -1  2  0 
 -1  0  1  1    -1  2 -1  0 
 0  1 -1  1     2 -1 -1  0 
 1 -1  0  1     1  1 -2  0 

PYRAMIDAL <c+a> 
  4   12   10   1.0   0.0  0           modex,nsmx,nrsx,gamd0x,twshx,isectwx 
 50.0  50.0   10.0   80.0  10.0         tau0xf,tau0xb,tau1x,thet0,thet1 
  1.0   1.0    1.0   1.0   1.0   1.0   1.0   hselfx, hlatex(1,im),im=1,nmodes 
 1  0 -1  1    -1 -1  2  3 
 1  0 -1  1    -2  1  1  3 
 0 -1  1  1     1  1 -2  3 
 0 -1  1  1    -1  2 -1  3 
 -1  1  0  1     2 -1 -1  3 
 -1  1  0  1     1 -2  1  3 
 -1  0  1  1     2 -1 -1  3 
 -1  0  1  1     1  1 -2  3 
 0  1 -1  1    -1 -1  2  3 
 0  1 -1  1     1 -2  1  3 
 1 -1  0  1    -2  1  1  3 
 1 -1  0  1    -1  2 -1  3 
TENSILE TWIN {10-12} 
  5   6   10   1.0   0.0  1           modex,nsmx,nrsx,gamd0x,twshx,isectwx/ twin 
shear = 0.167 
 45.0  45.0   30.0   800.0  130.0         tau0xf,tau0xb,tau1x,thet0,thet1 
  1.0   1.0    1.0   1.0   1.0   1.0   1.0   hselfx, hlatex(1,im),im=1,nmodes 
 1  0 -1  2    -1  0  1  1 
 0  1 -1  2     0 -1  1  1 
 -1  1  0  2     1 -1  0  1 
 -1  0  1  2     1  0 -1  1 
 0 -1  1  2     0  1 -1  1 
 1 -1  0  2    -1  1  0  1 
COMPRESSIVE TWIN {11-22} 
  6   6   10   1.0   0.0  1           modex,nsmx,nrsx,gamd0x,twshx,isectwx/ twin 
shear = 0.225 
 45.0  45.0   30.0   800.0  130.0         tau0xf,tau0xb,tau1x,thet0,thet1 
  1.0   1.0    1.0   1.0   1.0   1.0   1.0   hselfx, hlatex(1,im),im=1,nmodes 
 2 -1 -1  2     2 -1 -1 -3 
 1  1 -2  2     1  1 -2 -3 
 -1  2 -1  2    -1  2 -1 -3 
 -2  1  1  2    -2  1  1 -3 
 -1 -1  2  2    -1 -1  2 -3 
 1 -2  1  2     1 -2  1 -3 
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Output of vpFFT 

The following is a list of the output files from the viscoplastic FFT code and some idea of what each one 
contains. 
  
1. At each step, an image of the grid is output, e.g. name-tex-step#-processor#.txt.  The “name” prefix 
indicates the name for the simulation that you assigned in options.in.  The next 4 digits are the increment or 
step number.  The suffix “_out” is to indicate an output file.  The content of the file is exactly like the input, 
except that there are four header lines to make it compatible with popLA texture software (and Carlos Tomé’s 
analysis programs).  The header lines are like this: 
Y1=    0.418   0.000   0.000   0.017!
Y2=    0.000   1.000   0.000!
Y3=    0.000   0.000   2.358!
B     262144!
The first 3 lines are the deformation gradient (grid shape), with the strain increment as the 4th number on line 1.  
By “deformation gradient” is meant the matrix “F” as used in solid mechanics that is equal to dX/dx (new 
coordinates versus original coordinates).  In more prosaic terms, teach term on the leading diagonal gives the 
stretch values.  The 4th line has “B” for Bunge Euler angles, followed by the point count.  The following lines 
are exactly as in the input file, except that the von Mises equivalent stress and strain are inserted as columns 5 
and 6.  Column 4 is redundant (inherited from older versions).  This output file can be processed with FFT2dx, 
which is a C program that performs several types of analysis on the output of the FFT code set. This latter 
program requires a separate guide (!) to understand, e.g. distance map calculations.  The 1st 3 columns in the 
tex files contain the Euler angles for each point (as updated by the simulation) and the format is such that the 
file is equivalent to a “.WTS” format file that can be digested by popLA-related software, e.g. my wts2pop.f 
program.  The latter program converts a list of orientations to pole figures, orientation distributions etc.   
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Output of vpFFT: 2 

2.  At the end of the simulation, there are files called name-stress-step#-
processor#.vti, which contains an image of the von Mises equivalent stress in 
the simulation domain, and name-strain_rate-step#-processor#.vti, which has 
the strain rate.  Optionally also name-stress_deriv_magn-step#-processor#.vti.  
These are collected together as sets (one folder per step) with a pvti file in the 
main directory; you can click on the pvti file to directly view the image in 
Paraview without any further work.   

One problem is that if you started with a cube, for example, and simulated a tensile 
test, the resulting grid should be stretched to correspond to the tensile deformation.  
This is done by copying the (leading diagonal of the) deformation gradient 
information into header of the VTK file.  Unfortunately, Paraview does not pay 
attention to the shape of the domain in the pvti+vti file set as of late 2014. 
3.  At the end of the simulation, there are files called name-dfield-step#-proc#.output 
and name-sfield-step#-proc#.output , which contain the full tensor strain-rate and 
stress fields, respectively.  The “proc#” refers to parallel computations where each 
processor outputs its own section of the image (slab decomposition). These are just 
multi-column data (text) files and you cannot view them with Paraview directly.  
These can be converted to vtk files by using cnvrt_field.f90.  In particular, if you have 
a series of dfield files (currently only from the serial fft4 version), this program will 
compute the accumulated strain as dfield-accum-strain.vtk. 
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Output of vpFFT: 3 

4.  Also at the end, there are these files: 
conv_out.txt 
Just a list of the steps. 
err_out.txt 
This contains the error history, step by step. 
str_str_out.txt 
This contains the stress-strain history and you can use it to plot a stress-strain curve, e.g. to check the correctness of the 
hardening law. 
 
5.  In recent versions of the parallel version of the viscoplastic code, there are output files for the magnitude of the 
derivative of the stress such as Stress-Deriv-Magn-0000000000.vtk, with numbers corresponding to the number of 
processors used. In more recent versions (as noted previously) there may be an additional number that specifies the strain 
step.  You can assemble a complete image of the Stress derivative magnitude by executing the following commands.  The 
initial “cp” command just makes a copy of the CPU 0 part of the file (which contains the header lines) and the following “cat” 
commands append each CPU’s portion of the image. 
 
cp Stress-Deriv-Magn-0000000000.vtk Stress-Deriv-Magn.vtk 
cat Stress-Deriv-Magn-0000000001.vtk >> Stress-Deriv-Magn.vtk 
cat Stress-Deriv-Magn-0000000002.vtk >> Stress-Deriv-Magn.vtk 
cat Stress-Deriv-Magn-0000000003.vtk >> Stress-Deriv-Magn.vtk 
etc. etc. (for however many CPUs you ran on). 
 
6. In some simulations, we use buffer layers because the specimen or test being simulated should not be treated as 
periodic because there are free surfaces.  The simplest way to do this is to use multiple phases, where one assigns one 
phase (usually the highest number) to be the buffer layer (which has zero strength or stiffness).  For example, for the 
bicrystal tension test simulation, phase 1 is the actual material and phase 2 is the buffer layer.  When one examines the 
stress or strain-rate images in Paraview, it is usually a good idea to threshold by the phase number and retain only phase 1 
(in this example). 



27 Thermoelastic FFT 
  

€ 

1( )  ε x( ) = C−1 x( ) :σ x( ) +ε* x( )

  

€ 

2( )  σ x( ) = σ x( ) +Co : ε x( ) −Co : ε x( )
      σ x( ) = Co : ε x( ) + σ x( ) −Co : ε x( )( )
      σ x( ) = Co : ε x( ) + τ x( )
      

  

€ 

3( ) σij,j = 0                                     

      Cijkl
o uk,lj x( ) + τij,j x( ) = 0              

      periodic boundary conditions in RVE

  

€ 

4( )  Cijkl
o Gkm,lj x − # x ( ) +δimδ x − # x ( ) = 0

  

€ 

5( )  εij x( ) = sym Gik,jl x − $ x ( )τkl $ x ( )d $ x 
R3∫( )⇒ εij = Γijkl

o ∗τkl

      ⇒ fft εij = Γijkl
o ∗τkl( )⇒ εij = Γijkl

o : τkl

stiffness tensor of 
homogeneous solid


perturbation in stress field, 
associated with the 
heterogeneity in the elastic 
properties


Notation

Strain:                     ε 

Stress:                     σ

Stiffness:                 C

Perturbation Stress: τ

Displacement:       u    

Green’s function:  G

Xformed Green’s:  Γ


R.A. Lebensohn, Acta Materialia, 49, 2723-2737 (2001) 
B.S. Anglin, PhD Thesis, 2012; Comp. Matls. Sci. 87 209 (2014) 

~
 ~


~
^
 ^
 ^


S. Donegan, PhD Thesis, 2013; 
Anglin et al., Comp. Matls. Sci. 87 209 (2014) 

Γ obtained by solving Eq (4) in Fourier 
space, using Mura’s approach 

Examples @ 51 



28 
Stress Equilibrium 

8
><

>:

��

xx

�x

+ ��

xy

�y

+ ��

xz

�z

= 0
��

yx

�x

+ ��

yy

�y

+ ��

yz

�z

= 0
��

zx

�x

+ ��

zy

�y

+ ��

zz

�z

= 0

Stress equilibrium ensures that 
there is not net body force on 
the element. 

�ij,j = 0



29 
Compatibility 

For infinitesimal strains, compatibility is satisfied if the 
following equation holds:   

✏ij =
1

2
(ui,j + uj,i)

[largely from en.wikipedia.org/wiki/Compatibility_(mechanics)] Compatibility 
ensures that a unique strain (tensor) field is obtainable from a continuous, 
single-valued, displacement field.  Conceptually, if a continuous body is thought 
to be divided into infinitesimal volumes, compatibility describes the necessary 
conditions under which the body deforms without developing gaps or overlaps 
between said volumes. In the context of infinitesimal strain theory, these 
conditions are equivalent to stating that the displacements in a body can be 
obtained by integrating the strains. 



30 
Thermoelastic FFT 

Modified Hooke’s Law (linear elasticity) with incorporated 
eigenstrains, ε*, in reference to a homogeneous medium, 
where τ is a perturbation field associated with the 
heterogeneity in the elastic properties: 

�

ij

(x) = C

o

ijkl

: (✏
kl

(x)� ✏

⇤
kl

(x)) + ⌧

ij

(x)

Application of stress equilibrium: 

C

o

ijkl

u

k,lj

(x) + ⌧

ij,j

(x) = 0

Anglin et al., Comp. Matls. Sci. 87 209 (2014) 



31 
Thermoelastic FFT 

Application of Green’s function, using Mura’s approach: 

C

o

ijkl

G

km,lj

(x� x

0) + �

im

�(x� x

0) = 0

Anglin et al., Comp. Matls. Sci. 87 209 (2014) 

Application of Fourier Transform: 

Co

ijkl

⇠
l

⇠
j

Ĝ
km

= �
im

Periodic Green’s function in frequency space: 

�̂o

ijkl

= �(⇠
p

⇠
q

Co

ipkq

)�1⇠
j

⇠
l



32 
Thermoelastic FFT 

Anglin et al., Comp. Matls. Sci. 87 209 (2014) 

Application of periodic Green’s function to perturbation in 
stress field: 

ũk =

Z

V
Gki(x� x

0)⌧ij,j(x
0)dx0

Application of compatibility: 

✏ij(x) = Eij + sym

✓Z

V
Gik,jl(x� x

0)⌧kl(x
0)dx0

◆



33 
Augmented Lagrangian 

Response equation at each iteration: 
�w

�e

(x, ei) + C

o : ei(x) = C

o : ✏i(x) + �

i�1(x)

Stress field at each iteration: 

�

i(x) = �

i�1(x) + C

o : (✏i(x)� e

i(x))

Anglin et al., Comp. Matls. Sci. 87 209 (2014) 

Current strain Trial strain 

λ and e are auxiliary fields in the augmented Lagrangian 
method 



34 
Initializations for teFFT 

E

0 = h✏⇤(x)i � C

o

�1

: ⌃
�

0(x) = C

o : (E0 � ✏

⇤(x))
e

0(x) = E

0

Note: it is straightforward to develop a field of 
eigenstrains to represent (displacive) phase 
transformation, twinning, dislocations etc. 

Anglin et al., Comp. Matls. Sci. 87 209 (2014) 

E

0 = h✏⇤(x)i+ (C0)�1 : ⌃



35 
teFFT Iteration 

⌧

i(x) = �

i�1(x)� C

o : ei�1(x) + C(x) : ✏⇤(x)

⌧̂

i(⇠) = fft(⌧ i(x))

✏

i(x) = E

i�1 + sym

⇣
fft

�1
⇣
�̂o : ⌧̂ i(⇠)

⌘⌘

�

i(x) + C

o : (C�1(x) : �i(x) + ✏

⇤(x)) = �

i�1(x) + C

o : ✏i(x)

�

i(x) = (I + C

o : C�1(x))[�i�1(x) + C

o : (✏i(x)� ✏

⇤(x))]

e

i(x) = C

�1(x)�i(x) + ✏

⇤(x)

�

i(x) = �

i�1(x) + C

o : (✏i(x)� e

i(x))

E

i = h✏i(x)i+ C

o

�1

: (⌃� h�i(x)i)

1.


2.


3.


4.


5.


6.


7.


Anglin et al., Comp. Matls. Sci. 87 209 (2014) 
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FFT Errors, convergence 

Stress field errors: 

err[�i(x)] =
h||Co : (✏i(x)� e

i(x))||i
||h�i(x)i||

Strain field errors: 

err[ei(x)] =
h||✏i(x)� e

i(x)||i
E

Examples given later; in general, iteration is terminated after 
the change in the fields becomes small enough, or the error 
magnitude has dropped to small enough values. 

Anglin et al., Comp. Matls. Sci. 87 209 (2014) 
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S.P. Donegan  

PhD thesis 
(2013) 

APPENDIX A

Derivation of the teFFT Method

The following derivation is adapted from Mura [85]. Mura’s derivation solves

for the exact stress and strain fields. The periodic Green’s function in such

a formulation contains a singularity at x = x0, and therefore no solution.

To obtain a solution at this point, the approach of defining a homogeneous

reference medium is utilized [49]. This derivation will be presented for the

case of purely elastic strains. The derivation for the inclusion of eigenstrains

is mathematically identical [85]. Begin with the constitutive equation relating

stress and strain, which is Hooke’s law:

�
ij

= C
ijkl

✏
kl

(A.1)

where �
ij

is the stress tensor, ✏
kl

is the strain tensor, and C
ijkl

is the elastic

sti↵ness tensor. All tensor relations in equation A.1 can be defined as functions

of position, x. Incorporating the stress equilibrium condition from equation

2.13 leads to the following set of di↵erential equations:

8
>><

>>:

�(x) = C(x) : ✏(x)

�
ij,j

= 0

(A.2)

154
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where ‘ : ’ represents a double tensor contraction. The homogeneous reference

medium can be defined as having prescribed sti↵ness coe�cients C�, which are

the point average of C(x) over the entire domain:

C�(x) =
1

N

NX

i=1

C(x) (A.3)

where N is the total number of points in the domain. Note that although C�

is defined with respect to position in equation A.3, it is the same for all x.

Equations A.2 can now be rewritten with respect to the homogeneous reference

medium: 8
>><

>>:

�(x) = C� : ✏(x) + ⌧(x)

�
ij,j

= 0

(A.4)

where ⌧(x) is the perturbation in the stress field:

⌧(x) = (C(x)� C�) : ✏(x) (A.5)

By considering the compatibility relationship in equation 2.14, the equations

A.4 can be rewritten with respect to the displacement field:

C�
ijkl

u
k,lj

(x) + ⌧
ij,j

(x) = 0 (A.6)

where u
k

is the displacement vector along the x
k

-direction. Substituting for

⌧(x) based on equation A.5 yields:

C�
ijkl

u
k,lj

(x) = (C�
ijkl

� C
ijkl

(x))✏
kl,j

(x) (A.7)

Modeling Thermoelastic Stresses in TBCs S.P. Donegan
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Suppose ✏
ij

(x) is of the form of a wave of single amplitude ✏̄
ij

(⇠):

✏
ij

(x) = ✏̄
ij

(⇠) exp(i⇠ · x) (A.8)

where i is
p
�1 and ⇠ is a wave vector for a given period. The displacement

can also be represented as a single wave of the same amplitude:

u
i

(x) = ū
i

(⇠) exp(i⇠ · x) (A.9)

Equations A.8 and A.9 can be substituted into equation A.7:

C�
ijkl

ū
k

⇠
l

⇠j = �i(C�
ijkl

� C
ijkl

(x))✏̄
kl

⇠
j

(A.10)

Equation A.10 arises from the fact that (i⇠ · x)
,l

= i⇠
l

. For any given ✏̄
ij

there

are three unknown ū
i

. To solve this system, the following simplifications are

defined:

K
ik

(⇠) = C�
ijkl

⇠
l

⇠
j

X
i

= �i(C�
ijkl

� C
ijkl

(x))✏̄
kl

⇠
j

(A.11)

Equations A.11 allow equation A.10 to be written as a system of equations:

K
11

ū
1

+K
12

ū
2

+K
13

ū
3

= X
1

K
21

ū
1

+K
22

ū
2

+K
23

ū
3

= X
2

K
31

ū
1

+K
32

ū
2

+K
33

ū
3

= X
3

(A.12)

The amplitude of the displacement is now:

ū
i

(⇠) =
X

j

N
ij

(⇠)

D(⇠)
(A.13)

Modeling Thermoelastic Stresses in TBCs S.P. Donegan
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Noting that K(⇠) is the following matrix:

K(⇠) =

0

BBBB@

K
11

K
12

K
13

K
21

K
22

K
23

K
31

K
32

K
33

1

CCCCA
(A.14)

then N(⇠) is the cofactor matrix of K(⇠):

N(⇠) =

0

BBBB@

�K
23

K
32

+K
22

K
33

K
23

K
31

�K
21

K
33

�K
22

K
31

+K
21

K
32

K
13

K
32

�K
12

K
33

�K
13

K
31

+K
11

K
33

K
12

K
31

�K
11

K
32

�K
13

K
22

+K
12

K
23

K
13

K
21

�K
11

K
23

�K
12

K
21

+K
11

K
22

1

CCCCA

(A.15)

and D(⇠) is the determinant of K(⇠):

D(⇠) = �K
13

K
22

K
31

+K
12

K
23

K
31

+K
13

K
21

K
32

�K
11

K
23

K
32

�K
12

K
21

K
33

+K
11

K
22

K
33

(A.16)

Substituting equation A.13 into equation A.9 yields the following:

u
i

(x) =
X

j

N
ij

(⇠)

D(⇠)
exp(i⇠ · x) (A.17)

By the symmetry of C
ijkl

, the follwing is true:

K
ki

= C
kjil

⇠
j

⇠
l

= C
klij

⇠
l

⇠
j

= C
ijkl

⇠
l

⇠
j

= K
ik

(A.18)

Expanding X
j

in equation A.17 yields:

u
i

(x) = �i(C�
ijkl

� C
ijkl

(x))✏̄
kl

⇠
j

N
ij

(⇠)D�1(⇠) exp(i⇠ · x) (A.19)

Modeling Thermoelastic Stresses in TBCs S.P. Donegan
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Linear elasticity allows for the superposition of solutions. Equation A.19 can

be written as a summation over all frequencies:

u
i

(x) = �i
X

(C�
ijkl

� C
ijkl

(x))✏̄
kl

⇠
j

N
ij

(⇠)D�1(⇠) exp(i⇠ · x) (A.20)

Substituting equation A.20 into the compatibility equations yields:

✏
ij

(x) = 1

2

P
(C�

ijkl

� C
ijkl

(x))✏̄
kl

⇠
j

(⇠
l

N
ik

(⇠) + ⇠
j

N
jk

(⇠))D�1(⇠)

⇥ exp(i⇠ · x)
(A.21)

✏
ij

(x) can now be written as a Fourier integral:

✏
ij

(x) =

Z 1

�1
✏̄
ij

(⇠) exp(i⇠ · x)d⇠ (A.22)

where ✏̄
ij

(⇠) = 1

2⇡

3

R1
�1 ✏

ij

(x) exp(�i⇠ · x)dx. Substituting this representation

of strain in frequency space into equation A.20 yields:

u
i

(x) = �i 1

2⇡

3

R1
�1

R1
�1(C�

ijkl

� C
ijkl

(x))✏
kl

(x0)⇠
j

N
ij

(⇠)D�1(⇠)

⇥ exp(i⇠ · (x� x0))d⇠dx
(A.23)

Now consider a Green’s function of the following form:

G
ij

(x� x0) =
1

2⇡3

Z 1

�1
N

ij

(⇠)D�1(⇠) exp(i⇠ · (x� x0))d⇠ (A.24)

Substituting equation A.24 into equation A.23 yields:

u
i

(x) = �
Z 1

�1
(C�

ijkl

� C
ijkl

(x))✏
kl

(x0)G
km,j

(x� x0)dx0 (A.25)

Modeling Thermoelastic Stresses in TBCs S.P. Donegan
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Equation 2.17 can now be verified. First multiply the equation A.24 by the

homogeneous sti↵ness tensor:

C�
ijkl

G
km,lj

(x� x0) = 1

2⇡

3

R1
�1 C�

ijkl

N
km

(⇠)D�1(⇠)⇠
l

⇠
j

exp(i⇠ · (x� x0))d⇠

= 1

2⇡

3

R1
�1 K

ik

(⇠)N
km

(⇠)D�1(⇠) exp(i⇠ · (x� x0))d⇠

(A.26)

Since N(⇠) is the cofactor matrix of K(⇠), the following is true:

K
ik

(⇠)N
km

(⇠)D�1(⇠) = �
im

(A.27)

where �
im

is the Kronecker delta. The Dirac delta function, �(x�x0), can also

be redefined:

�(x� x0) = �(x
1

� x0
1

)�(x
2

� x0
2

)�(x
3

� x0
3

)

= � 1

2⇡

3

R1
�1 exp(i⇠ · (x� x0)d⇠

(A.28)

Substituting equation A.28 and equation A.27 into equation A.26 yields equa-

tion 2.17. The solution to equation 2.17 is the convolution of the periodic

Green’s function with the stress perturbation fields, which yields equation

2.18. Use of compatibility yields equation 2.19. Setting �
ijkl

= sym(G
ik,jl

)

simplifies equation 2.19:

✏̃
ij

= �
ijkl

⇤ ⌧
kl

(A.29)

In frequency space, equation A.29 appears as follows:

ˆ̃✏
ij

= �̂�
ijkl

: ⌧̂
kl

(A.30)
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Applying the Fourier transform to equation 2.17 yields equation 2.20. From

the above definitions of N(⇠) and D(⇠), it follows that:

Ĝ
km

= N
km

D�1 = A�1

km

(A.31)

The di↵erentiated Green’s function, �̂�
ijkl

, can now be written in terms ofA(⇠):

�̂�
ijkl

= �1

2
(⇠

l

⇠
j

A�1

ik

+ ⇠
l

⇠
i

A�1

ik

) (A.32)

Equation A.32 allows for a solution for the periodic Green’s function in fre-

quency space at all ⇠.

Modeling Thermoelastic Stresses in TBCs S.P. Donegan



44 FFT Approach for Viscoplastic Polycrystals  

€ 

˙ ε x( ) = ˙ γ o ms x( )
s
∑ ms x( ) : % σ x( )

τ o
s x( )

( 

) 
* 

+ 

, 
- 

n

€ 

" σ x( ) = " σ x( ) + Lo : ˙ ε (x) − Lo : ˙ ε (x)

= Lo : ˙ ε (x) + " σ x( ) − Lo : ˙ ε (x)( )
= Lo : ˙ ε (x) + τ (x)

Stiffness of a Linear  
Reference Medium!

Fluctuation (Heterogeneity Field) !
Function of Solution!
→ Requires Iterative Procedure!

Rate-sensitive approach (n = Viscoplastic exponent)"

Threshold Stress (Hardening 
of deformed system)!

€ 

Lijkl
o vk,lj x( ) + τ ij, j x( ) − p,i x( ) = 0 in RVE

vk,k x( ) = 0 in RVE
periodic boundary conditions across RVE

€ 

Lijkl
o Gkm,lj x − x'( ) −Hm,i x − x '( ) + δimδ x − x '( ) = 0

Gkm,k x − x '( ) = 0

€ 

˜ v i, j x( ) = sym Gik, jl x − # x ( ) τ kl # x ( ) d # x 
R 3
∫

& 

' 
( 

) 

* 
+ 

⇒ v = Γo ∗ τ ⇒ ˜ ˆ v = ˆ Γ o : ˆ τ ⇒

Equilibrium + Incompressibility"
"

Green’s Function Method"

FFT 

Upon Convergence:  

Velocity, Strain-Rate and Rotation-Rate Fields are 
obtained  

→ Morphology, Hardening and Texture Evolution!

Schmid Tensor!
(1) 

(2) 

(3) 

(4) 

(5) 

€ 

Slip Geometry :  mij
(s) = bi

(s)n j
(s) = b(s) ⊗ n(s)

FFT code parallelized with FFTW 

R.A. Lebensohn, Acta Materialia, 49, 2723-2737 (2001) 



45 
FFT solution - basics 

§  We use standard definitions of 
various quantities such as 
Cauchy stress (σ), deviatoric 
stress (σ’), velocity gradient, 
v, symmetric and skew-
symmetric parts of strain rate, 
symmetric and skew-
symmetric Schmid tensors. 

§  We distinguish between local 
values (lower case) and RVE 
average values (upper case). 

€ 

N1 × N2 × N3   Fourier grid points

€ 

˙ E ij = Dij = 1
2 Vi, j + V j,i( )

€ 

˙ Ω ij = 1
2 Vi, j −V j ,i( )

€ 

˙ ε ij vk x( )( ) = ˙ E ij + ˙ ˜ ε ij ˜ v k x( )( ) = Dij + ˙ ˜ ε ij ˜ v k x( )( )

€ 

vi x( ) = ˙ E ij x j + ˜ v i x( ) = Dij x j + ˜ v i x( )

€ 

ms x( ) = 1
2 ns x( )⊗ bs x( ) + bs x( )⊗ ns x( )( )

€ 

α s x( ) = 1
2 ns x( )⊗ bs x( ) − bs x( )⊗ ns x( )( )

€ 

˙ ˜ ε ij x( ) = ˜ u i, j x( ) + ˜ u j ,i x( )( ) 2

€ 

˙ γ = ˙ γ o ([ms : # σ ]/τ o
s )n



46 FFT method for viscoplasticity 
§  Given a heterogeneous RVE with periodic boundary conditions, the 

local solutions for stress and strain-rate for each Fourier point can be 
obtained from the requirement for stress equilibrium (left) and 
incompressibility (right) as follows: 

Lijkl
o uk,lj (x)+ τ ij, j (x) − p,i (x) = 0 and uk,k (x) = 0

§  Here u-dotk is the vector velocity field (varies with position x); 
differentiating this w.r.t. the lth-direction, u-dotk,l, is the gradient in the 
velocity field in that direction, p(x) is the hydrostatic pressure field 
(+ve = compression) and  τij(x) is a perturbation field.  The key point 
of the approach is to introduce a homogeneous reference medium of 
stiffness, L0

ijkl, such that τij(x) is derived from: 

€ 

" σ x( ) = " σ x( ) + Lo : ˙ ε (x) − Lo : ˙ ε (x)

= Lo : ˙ ε (x) + " σ x( ) − Lo : ˙ ε (x)( )
= Lo : ˙ ε (x) + τ (x)

This development is based on the copper misorientation paper, Lebensohn et al. Acta mater. 2008 



47 
FFT method – Green’s function 

§  The Green’s function method can be used to solve the system of 
differential equations for stress equilibrium. The local fluctuations in 
velocity, velocity-gradient and strain-rate fields can, accordingly, be 
expressed as convolutions in the real space (note the different order of 
differentiation on the two Green’s functions, G): 

€ 

˜ u k x( ) = Gki, j x− # x ( ) τ ij # x ( )d # x 
R3
∫ and ˜ u i, j x( ) = Gik, jl x− # x ( ) τkl # x ( )d # x 

R3
∫

§  Since a convolution integral in real space can be expressed as a product 
in the Fourier space, we have this tensorial product: 

€ 

˙ ˜ ˆ ε ij ξ( ) = ˆ Γ ijkl ξ( ) ˆ τ kl ξ( )
§  where "^" denotes the Fourier transform of the corresponding tensors. 

€ 

Γijkl = sym Gik, jl( )
§  Note that the displacements are also useful when one needs to update a 

material grid, for example.   

Co

ijkl

⇠
l

⇠
j

Ĝ
km

= �
im



48 FFT method - iterative solution 
§  If τij(x) is known, τ-hatij(ξ) can readily obtained by means of the FFT 

algorithm and the local fluctuation in the strain-rate field can be 
calculated from the Equations already given. 

§  However, the perturbation field can only be determined if the local 
strain-rate in Eq. (3) is known. This requires the implementation of an 
iterative method, explained elsewhere, with an initially specified 
strain-rate field, such that the deviatoric stress at each point can be 
obtained by solving: 

€ 

˙ ε (x) = ˙ γ o ms(x)
s
∑ ([ms(x) : % σ (x)]/τ o

s (x))n (1)

§  Here ms is the Schmid tensor for the sth slip system s, τ0
s is the 

corresponding critical resolved stress, n is the rate-sensitivity exponent 
(typically between 10 and 60) and γ-dot0 is a normalization factor 
(reference shear rate). For each iteration, the (implicit) equation above 
provides a new value of the deviatoric stress, σ’, which is then inserted 
into the previous equation to obtain a new value of strain rate. 



49 
Iteration: Augmented Lagrangians 

§  Iteration steps involve … 
 

§  Multiply Γ by transformed σ to 
get d in Fourier space  

§  The strain rate in real space is 
just the inverse FFT of the 
Fourier space d. 

§  The strain rate at each point 
is, however, also solved via 
the rate-sensitive relationship 
 

§  The last step in an iteration is 
to get the estimate of the next 
set of Lagrange multipliers. 

€ 

˜ ˆ d ij
i+1 ξ d( ) = − ˆ Γ ijkl

sym ξ d( ) ˆ ϕ kl
i ξ d( ),

∀ξ d ≠ 0; and ˜ ˆ d ij
i+1 0( ) = 0

€ 

˜ d ij
i+1 xd( ) = fft−1 ˜ ˆ d ij

i+1 ξ d( ){ }

€ 

" σ i+1 xd( ) + Lo : ˙ γ o ms xd( )
ms xd( ) : " σ i+1 xd( )

τ s xd( )
& 

' 
( 
( 

) 

* 
+ 
+ 

s=1

Ns

∑
n

= λi xd( ) + Lo : ˙ E + ˜ d i+1 xd( )( )

€ 

λi+1 xd( ) = λi xd( ) + Lo : ˙ ˜ ε i+1 xd( ) − ˜ d i+1 xd( )( )

Michel, J. C., H. Moulinec et al. (2000). "A computational method based on augmented Lagrangians 
and fast Fourier Transforms for composites with high contrast." CMES - Computer Modeling in 
Engineering & Sciences 1(2): 79-88 



50 Elasto-Viscoplastic FFT Model 

���total(x) = ���e(x) + ���p(x) = CCC�1(x) : ⇥⇥⇥(x) + ���p,t(x) + �̇̇�̇�p(x,⇥⇥⇥)�t

Establish Polarization Field   

Constitutive Equations  

Combine with Equilibrium Condition 

Apply Green’s Function Method 

⇥̇̇⇥̇⇥p(x) = �̇
o

NsX

s=1

mmms(x)

✓
|mmms(x) : ⇤0⇤0⇤0(x)|

⌅ s(x)

◆
n

� sgn(mmms(x) : ⇤0⇤0⇤0(x))

R. A. Lebensohn et al., Intl J Plasticity 32-33 59 (2012). 

ms= Schmid Tensor  γ0= Reference Shear Rate  σ’= Deviatoric Stress  τs= CRSS  C= Stiffness Tensor  

Solve Resulting Convolution Integral 

Iteratively Solve for Stress/Strain  
via Augmented Lagrangian Scheme 

⇥
ij

(x) = �
ij

(x)� Co

ijkl

u
k,l

(x)

⇥
ij

(x) = Local Polarization Field

�
ij

(x) = Local Stress Tensor

Co

ijkl

= Sti�ness of Linear Reference Material

u
k,l

(x) = Local Displacement Gradient



51 Elasto-Viscoplastic FFT Model 

���total(x) = ���e(x) + ���p(x) = CCC�1(x) : ⇥⇥⇥(x) + ���p,t(x) + �̇̇�̇�p(x,⇥⇥⇥)�t

Establish Polarization Field   

Constitutive Equations  

Combine with Equilibrium Condition 

Apply Green’s Function Method 

⇥̇̇⇥̇⇥p(x) = �̇
o

NsX

s=1

mmms(x)

✓
|mmms(x) : ⇤0⇤0⇤0(x)|

⌅ s(x)

◆
n

� sgn(mmms(x) : ⇤0⇤0⇤0(x))

ms= Schmid Tensor  γ0= Reference Shear Rate  σ’= Deviatoric Stress  τs= CRSS  C= Stiffness Tensor  

Solve Resulting Convolution Integral 

⇥
ij

(x) = �
ij

(x)� Co

ijkl

u
k,l

(x)

Co

ijkl

u
k,lj

(x) + �
ij,j

(x) = 0

�ij,j(x) = 0
+ 

Iteratively Solve for Stress/Strain  
via Augmented Lagrangian Scheme 

R. A. Lebensohn et al., Intl J Plasticity 32-33 59 (2012). 



52 Elasto-Viscoplastic FFT Model 

���total(x) = ���e(x) + ���p(x) = CCC�1(x) : ⇥⇥⇥(x) + ���p,t(x) + �̇̇�̇�p(x,⇥⇥⇥)�t

Establish Polarization Field   

Constitutive Equations  

Combine with Equilibrium Condition 

Apply Green’s Function Method 

⇥̇̇⇥̇⇥p(x) = �̇
o

NsX

s=1

mmms(x)

✓
|mmms(x) : ⇤0⇤0⇤0(x)|

⌅ s(x)

◆
n

� sgn(mmms(x) : ⇤0⇤0⇤0(x))

ms= Schmid Tensor  γ0= Reference Shear Rate  σ’= Deviatoric Stress  τs= CRSS  C= Stiffness Tensor  

Solve Resulting Convolution Integral 

⇥
ij

(x) = �
ij

(x)� Co

ijkl

u
k,l

(x)

Co

ijkl

u
k,lj

(x) + �
ij,j

(x) = 0

Co

ijkl

G
km,lj

(x� x0) + �
im

�(x� x0) = 0

Periodic Boundary Conditions

+ 

Iteratively Solve for Stress/Strain  
via Augmented Lagrangian Scheme 

R. A. Lebensohn et al., Intl J Plasticity 32-33 59 (2012). 



53 Elasto-Viscoplastic FFT Model 

���total(x) = ���e(x) + ���p(x) = CCC�1(x) : ⇥⇥⇥(x) + ���p,t(x) + �̇̇�̇�p(x,⇥⇥⇥)�t

Establish Polarization Field   

Constitutive Equations  

Combine with Equilibrium Condition 

Apply Green’s Function Method 

⇥̇̇⇥̇⇥p(x) = �̇
o

NsX

s=1

mmms(x)

✓
|mmms(x) : ⇤0⇤0⇤0(x)|

⌅ s(x)

◆
n

� sgn(mmms(x) : ⇤0⇤0⇤0(x))

ms= Schmid Tensor  γ0= Reference Shear Rate  σ’= Deviatoric Stress  τs= CRSS  C= Stiffness Tensor  

Solve Resulting Convolution Integral 

⇥
ij

(x) = �
ij

(x)� Co

ijkl

u
k,l

(x)

Co

ijkl

u
k,lj

(x) + �
ij,j

(x) = 0

Co

ijkl

G
km,lj

(x� x0) + �
im

�(x� x0) = 0

uk,l(x) =

Z

R3

Gki,jl(x� x0)�ij(x
0)dx0

�
ij

(x) = E
ij

+ FT�1[sym(�̂o

ijkl

(k))⇥̂
kl

(k)]
Iteratively Solve for Stress/Strain  

via Augmented Lagrangian Scheme 

R. A. Lebensohn et al., Intl J Plasticity 32-33 59 (2012). 



54 
Examples of Applications 

§  Application examples of the FFT-based method are intended to 
show the reader how to extract micromechanical fields from 
microstructures. 



55 
Example: Dislocation Stress Fields 

Why use FFT? 
Current Dislocation Dynamics codes compute stress fields based 
on formulae from Hirth & Lothe.  Anisotropic elasticity is considered 
to be expensive.  
Expected Result? 
The expected result is that using the FFT method will return 
accurate stress fields and that calculations with anisotropic 
elasticity will be no more expensive than for isotropic. 
How was it done? 
In 2D, dislocations are modeled as units of eigenstrain at 
gridpoints.  The computation is thermoelastic. 
PhD by John Chapman advised by R.A. LeSar & A.D. Rollett; NSF 
support 
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Dislocation distributions and β

!
20 dislocation pairs (⊥ … ⊤) on a 2n x 2n grid.  

!
Dislocations located on y grid lines and somewhere between x 
grid lines.

!

!

!

!

!

7

β21

medium gray, 0; white, 1; 
dark gray, -1; black, -2


σ21
Dislocation Stress Fields 

Comparison of isotropic FFT with known 
isotropic stresses:  128x128 grid


8

Black curves:  isotropic stresses from FFT 
(128x128 grid) 
!
Blue points: stresses from analytic 
isotropic solutions for full periodic 
boundary conditions: A. N. Gulluoglu, D. J. 

Srolovitz, R. LeSar, P. S. Lomdahl, Scripta Metallurgica 23 
1347-1352 (1989)

y=1

y=16

y=64

Shows that isotropic FFT agrees with analytical solutions

Comparison of anisotropic FFT with known 
isotropic stresses:  128x128 grid


9

Black curves:  fully anisotropic cijkl 
from FFT (only change was in elastic 
constants) (128x128 grid); no 
difference in calculation time 
!
Blue points: stresses from isotropic 
FFT calculations

y=1

y=16

y=64

Difference indicates the effects of anisotropic elasticity.

isotropic anisotropic 



57 
Example: Fatigue Cracks 

Why use FFT? 
We observe cracks on the surface of a specimen.  The 
micromechanical fields allow us to derive the resolved shear 
stresses on specific slip systems. 
Expected Result? 
The expected result is that the grains with cracks would show high 
resolved shear stresses as a result of the elastic anisotropy of the 
material. 
How was it done? 
It is simple to re-format an EBSD map; mainly one has to add a 
grain_ID and a phase_ID. 
PhD by Clay Stein; AFOSR support 
 



58 
LSHR: Graded Microstructure 

Specimen = 11-488 
Stress max. = 1050 MPa 
Stress ratio, R = 0.05 
Frequency, ν = 10 Hz 

Loading = Axial; Sinusoidal 
T = Room temperature 
Specimen surface = Electropolished 
Small-crack monitoring method = Replication 

Tested at AFRL 
by S. Jha & 
R. John 

Nominal: wt.%: 3.5Al, 0.03 B, 0.03C, 20.7Co, 12.5Cr, 2.7Mo, 1.5Nb, 1.6Ta, 3.5Ti, 4.3W, 0.05Zr, bal Ni. 



59 

Grain size is of order 20 µm.  In a 
volume 6 x 3 x 1 mm, there are of 
order 2 million grains.  Approximately 
10 (possible) microcracks observed.  
Ratio≈1 in 106 

LSHR:  
Microcracks 



62 Example of micro-crack and RSS	


Full field stress resolved onto available slip systems at each point (2D calculation, 
based on EBSD map).  Note alternation in stress across twin boundaries, as noted 
by Neumann et al.  Maximum resolved shear stress measured. Similar to Schmid 
factor but accounts for anisotropy, neighbor interactions etc.	




63 Fatigue crack initiation, slip localization and twin boundaries  
in a nickel-based superalloy:  

COSSMS (2014) C. Stein, S.-B. Lee, A.D. Rollett 
Probability plots made with R – www.r-project.org 

Twin length (µm)	


Conclusions: from examination of several micro-cracks, computing the 
resolved shear stress (using elastic FFT) on coherent-twin-parallel slip systems 
does not  account for the crack initiation.  Boundary length appears to play a 
significant role, which is reasonable in light of the importance of ALA grains.  All 
this obtained from surfaces, i.e. 2D data. Distributions are not log-normal.   



64 
Example: Thermal Barrier Coatings 

Why use FFT? 
Thermal barrier coatings are known to fail through cracking.  The 
micromechanical fields allow us to analyze for the potential causes. 
Expected Result? 
The expected result is that the anisotropy in thermal expansion in 
the bond coat lead to high resolved shear stresses as a result of 
the elastic anisotropy of the material.  In addition, it was anticipated 
that microstructure could affect the result. 
How was it done? 
No measured microstructures were available.  Synthetic 3D 
microstructures (3153) were generated to represent typical TBC
+bond coat+substrate microstructures. 
PhD by Sean Donegan; DOE/NETL support 



65 
Thermal Barrier Coatings: Introduction


§  Metallic components in gas-turbine engines are exposed to extreme 
levels of temperature.

§  Thermal barrier coatings provide insulation to metallic components in 
hot gas environments.


65 
PhD by Sean Donegan	




66 
Synthetic Structure Creation


Microstructure, especially at 
the interfaces between TBC 
layers, plays a crucial role in 
failure.  To better appreciate 
the role of microstructure, 
DREAM3D is used to generate 
test microstructures.



DREAM3D is a tool used to 
generate and analyze synthetic 
material microstructures.  
DREAM3D can create a 3D 
microstructure from a set of 
statistical data.   


BC = Bond Coat

TGO = thermally grown oxide

TC = Top Coat (yttria)
 substrate


BC


TC


TGO




67 
Texture Control


TGO: no texture
 TGO: texture




68 
Potts Model Interface Relaxation


localized Potts model
phase maps

BC

TGO


TC




71 

71 

contour map


z-smooth EED


POT


quantify hot spots


Correlate Hot Spots to Microstructure


0

100

200

300

0 100 200 300
x

y



74 
Boxplots: BC/TGO (Lower) Interface


columnar top coat, 
textured TGO, (Ni,Pt)Al 
bond coat


splat top coat, textured 
TGO, (Ni,Pt)Al bond coat
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75 
Boxplots: TGO/TC (Upper) Interface


columnar top coat, 
textured TGO, (Ni,Pt)Al 
bond coat


splat top coat, textured 
TGO, (Ni,Pt)Al bond coat


●

●

●●
●
●
●
●

●●

●

●●

●
●

●
●

●

●
●
●

●

●

●
●
●●

●

●
●
●

●

●

●
●
●●

●
●

●

●

●

●●

●
●

●●

●

●●●
●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●
●

●

●
●
●

●
●●
●

●●

●●

●●
●
●
●

●

●

●●●

●●

●
●
●

●

●

●

●
●

●●

●

●

●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●●●●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●
●

●

●
●
●

●
●●●●●●
●
●
●

●●

●
●

●●
●
●
●
●
●

●
●
●

●
●

●

●●

●

●

●

●

●
●

●●

●

●

●

●●
●●
●

●●

●●●

●

●

●●●●●●
●●●
●
●

●

●
●●

●
●

●

●

●

●
●
●

●

●●

●
●
●●

●
●
●●

●

●
●
●●
●●●●
●●

●

●●●
●

●●

●

●
●●

●

●
●
●●

●

●

●

●

●

●●

●
●
●

●

●●

●

●

●
●●●

●
●

●

●

●
●

●

●
●

●●

●
●●

●

●
●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●●

●

●

●●

●
●●
●
●●
●●●●

●

●

●
●

●●

●

●●
●

●●

●

●
●

●
●

●
●
●

●●
●

●
●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●●

●

●
●
●●●
●

●

●●

●

●●

●
●
●

●●

●

●
●

●

●
●

●

●
●●

●●

●●

●

●
●

●●
●

●

●

●●
●●●●●●

●

●
●●

●●

●

●
●

●●

●

●
●●
●●●
●●●●●

●

●

●●

●

●
●●
●●

●

●●

●

●

●
●
●

●●

●

●●

●

●

●

●

●

●●
●●

●

●

●

●●

●

●
●
●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●
●●●●●●●

●
●
●
●
●

●
●
●
●

●

●

●●
●
●●

●

●●●●

●
●

●

●

●
●●
●
●●

●

●
●●●

●
●

●●
●
●●
●
●
●●
●●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●
●

●
●
●●

●

●
●
●●●●
●
●●
●
●
●

●●●
●
●

●●
●
●
●
●
●
●
●
●
●

●●

●●●

●

●

●
●

●

●
●●
●
●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●●●●
●
●

●
●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●●
●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●●
●
●●

●

●

●

●

●
●
●

●

●
●

●

●●
●
●
●

●

●

●●

●

●●

●

●●●●
●●
●
●●
●

●
●

●

●

●●

●
●

●
●

●

●

●●
●

●●

●

●

●

●●●
●
●

●

●

●

●

●
●●
●●
●
●●
●
●●
●●●●
●
●●
●
●●●

●
●●●

●

●

●

●●●

●

●

●

●●

●●

●

●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●
●
●

●

●

●

●

●

●

●

●

●
●

●●●●

●

●

●

●
●

●

●

●

●
●
●
●

●

●
●

●

●
●●●●●

●

●

●
●●

●

●

●●
●●

●

●

●

●

8000

8500

9000

9500

10000

−5 −4 −3 −2 −1 0 2 3 4 5 6
Elevation

EE
D

 (k
J

m
3 )

●●

●●
●

●

●

●
●

●

●

●
●
●

●
●
●
●
●

●

●
●●
●●

●

●

●

●
●

●
●

●●

●●
●

●
●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●
●
●
●

●●

●
●

●
●

●
●

●

●

●

●
●●

●

●
●●
●

●

●●●
●

●

●
●●
●●

●

●
●●

●

●

●

●

●

●●
●

●●

●
●
●●

●

●
●

●

●

●●

●

●

●
●●

●

●●
●

●●●
●
●●

●

●●
●
●●

●●

●

●

●●
●

●

●●●
●●

●

●

●●
●

●

●
●●

●
●●
●

●

●

●

●
●

●

●
●●
●

●

●●●

●●

●

●

●

●

●

●●
●
●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●●●

●●

●

●●●

●

●
●

●

●●●
●
●
●

●

●

●●●●●

●

●●
●●
●●

●

●
●
●
●
●
●

●

●

●
●
●
●
●
●
●

●
●●
●
●

●

●●

●●●●●

●

●

●
●
●
●

●

●●

●
●

●

●●

●
●

●●

●
●

●

●

●

●
●

●●

●●

●●

●

●

●
●

●

●

●●
●

●

●

●●
●

●

●
●●

●

●
●●

●

●

●

●

●

●

●
●●
●
●

●●
●●●●

●
●●
●

●

●

●

●

●
●

●

●

●●
●●
●

●

●●
●
●●
●
●●
●

●

●●●

●

●
●●

●
●

●●

●

●

●
●●
●
●●

●
●●●●
●
●
●●

●●
●●
●●
●
●●
●

●

●●
●

●●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●●

●

●
●

●●
●●
●
●
●●●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●
●
●

●

●

●
●
●●

●
●

●
●
●
●
●

●
●●
●
●
●
●
●
●
●
●●●
●
●

●

●

●

●●
●
●

●

●●●

●

●●

●●

●

●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●
●

●

●

●

●●

●

●●

●●●●
●

●
●
●

●
●

●●●
●
●●

●
●

●●
●

●●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●
●●

●

●●

●●
●●●●
●

●

●
●●

●

●
●●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●
●
●

●

●
●

●
●●

●

●

●●●
●
●●
●●●

●

●●
●

●
●

●

●

●
●●
●
●

●●

●

●

●

●

●

●
●
●●
●

●

●●
●
●
●●

●●

●

●●●

●

●
●

●

●

●

●
●

●

●

●●

●

●●●
●●

●
●●

●●
●
●

●

●
●

●

●
●

●

●

●

●

●
●
●
●●●●
●

●

●

●
●●●
●

●

●●●
●

●

●

●●●

●●

●

●●●
●

●

●
●

●●●

●

●

●

●●
●
●●

●

●

●●●
●●●
●
●

●

●●
●

●

●

●

●

●
●
●●

●

●

●

●

●●●
●

●

●

●

●●
●
●

●

●

●

●

●
●

●
●

●●
●●●●
●●●
●
●

●●●●●
●●●

●

●
●
●

●

●

●●●●

●

●

●●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●●

●●
●

●

●●

●

●
●

●

●
●

●

●
●
●●

●
●
●●
●

●

●

●●

●●
●
●●

●
●●●●
●●●
●●
●●●●●●
●
●

●

●●

●

●
●
●●

●

●

●●

●

●●●●

●

●
●

●

●

●
●

●●

●●

●
●
●●

●●
●●●
●●●

●
●
●●

●

●●
●●
●●
●

●

●

●

●

●

●●

●

●

●

●●
●
●
●

●

●
●

●●
●

●●●

●

●
●

●
●

●

●
●●

●●●●●

●●
●

●
●●

●
●

●

●●

●
●
●
●●

●
●

●
●●

●

●

●

●

●

●
●

●
●
●
●

●
●●
●

●

●

●
●●
●
●

●

●

●
●●
●
●

●

●

●

●●
●●●

●

●

●
●

●●
●
●

●

●

●

●●

●

●
●

●

●
●
●

●
●
●
●●●
●

●

●●
●
●●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●●●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

7000

8000

9000

−5 −4 −3 −2 −1 0 2 3 4 5 6
Elevation

EE
D

 (k
J

m
3 )



76 
Example: Copper, tension 

Why use FFT? 
The objective is to validate the crystal plasticity model embedded in 
vpFFT and evpFFT in their various forms (e.g. dual grids, e.g. 
orientation gradient hardening). 
Expected Result? 
The desired result is that the FFT calculations will succeed in 
reproducing the experimental results, with appropriate choice of 
model and parameters.  In fact, the variations in the computed 
results are small compared to difference with experiment. 
How was it done? 
High Energy Diffraction Microscopy (HEDM) was performed for 
multiple strain steps (snapshots) in tension tests on copper and 
zirconium. 
PhDs by Reeju Pokharel and Jonathan Lind; DOE/BES support 



77 
Comparing Simulation with the  

3D Copper Experiment 

§  Choose a central layer in the original 
undeformed volume.  Locate the 
nearest equivalent layer in a deformed 
volume.  Compute, pointwise, the 
change in orientation (resulting from 
the plastic strain). Separate that 
change (misorientation) into a 
magnitude (rotation angle) and an axis 
of rotation. 

§  Instantiate a simulation with the initial, 
undeformed volume.  Simulate 
uniaxial tension with different models.  
Compare the same chosen layer 
against its initial state, point by point. 


