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Well-Separated Length Scales and RVEs
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Key Assumptions

• Homogenization length scales � and � exist ( allows definition of material constitutive 

laws at these length scales)

• No major gradients occur at these length scales (fluctuations – even large ones – are 

allowed)

• ��: length scale of a representative (structure) volume element (RVE)

• Well-separated length scales:   � < �� ≪ �

Challenges:  Interfaces, Atomistics



Local States and Local State Spaces

• Local State: a set of material structure attributes needed to 
completely specify all of the relevant material properties of 
interest at the selected length scale. 

• Local State Space: the complete set of all theoretically 
possible local states one might expect to encounter in a given 
material system (including all the local states that may not 
even be present in a given sample of the selected material 
system)

											ℎ = �, ��
� = �, �� |� ∈ �, �, �, … , �� ∈ !�"

Example:  Multiphase Composites



Polycrystalline Microstructures
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Microstructure Function

ℎ &, '
• Deterministic

• Impractical to implement in practice due to the 

resolution limits and uncertainty  inherent to the 

characterization techniques used 

• Does not allow for the presence of mixed local 

states (e.g., grain/phase boundary region)



Microstructure Function

( ℎ, &, ' or 

• Defined as the probability density associated with

finding local state ℎ at the spatial location & at time '

• Captures the probability of finding one of the local

states that lie within a small interval )ℎ centered

around ℎ at a selected & ; ( ℎ, & )ℎ)&would

represent the probability and ( ℎ, & the

corresponding probability density

• Experiments typically produce only discretized

information suitable to evaluating( ℎ, &

( ℎ, &

Adams, Kalidindi & Fullwood, Butterworth-Heinemann, 2012



Digital Representations

• Information is stored in discrete units

• Many examples in images, music, and videos; has 

completely transformed these domains

• Involves discretization (sampling) and quantization 

(rounding)

• Most experimental materials datasets are already digitized

• Much less in materials simulation datasets – but there are 

good reasons to pursue digital representations

• Digital representations allow us to exploit the tools of 

digital signal processing (DSP)



Discretized Microstructure Function

( ℎ, &

(*+|, = 0,1, 2, … , 0 − 1; 3= 1, 2, …, N

(*+ represents the total volume fraction of all local 

states from bin n in the spatial bin s
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Discretized Microstructure Function
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Eigen microstructures



Discretized Microstructure Function
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Microstructure Ensemble

((P) 9+; 	Q	 = 	1, 2, … , R

a microstructure versus the microstructure

(SVE)                                     (RVE) 



Microstructure Statistics
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1-point spatial correlations or 1-point statistics



Microstructure Statistics
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0U is the number of spatial bins 

that allow the placement of both s

and s+r with the microstructure 

volume being studied

Periodic Boundaries: 0U = 0

2-point spatial correlations or 2-point statistics

r indexes bins in vector space



Microstructure Statistics

Non-periodic Boundaries
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Redundancies in 2-pt. Statistics

SU+V =	
SU77 ⋯ SU75
⋮ ⋱ ⋮
SU57 ⋯ SU55

SU+V =	S?UV+ 4SU+V
5

V67
=	S+

For a two-phase material, if SU77 is known then SU7:, SU:7
and SU:: can be calculated.

Niezgoda et al., Acta Materialia, 2008. 56(18), p. 5285-

5292:  Only (N-1) independent correlations (using DFTs)



2-pt. Statistics Using DFTs

Implicitly assume periodic boundaries

DG+ = ℑ (*+ =4(*+H:I�9∙G/f
>?s
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$G+V = ℑ SU+V = 10DG
+∗DGV

SU+V = SU+V∗ ⇒ $G+V = $ >?s ?G+V∗

Autocorrelations:		$G++ = $G++∗

SU+V =
1
0U4(9+(9WUV
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Plotting 2-pt. Statistics Using DFTs

$G+V = ℑ SU+V = 10DG
+∗DGV

DG+ = ℑ (9+ =4(*+H:I�9∙G/f
>?s

96A
9 = A, s, … , > − s

U = A, s, … , > − s

Plotting: U = − > − s 2⁄ ,…− s, A, s, … , > − s 2⁄

(U = −> 2⁄ ,…− s, A, s, … , > 2⁄ when > is even)

SU+V = SUW>+V



Plotting 2 -Point Correlations
Microstructure 2-point auto correlation

• Image is converted into a smooth continuous pdf
• pdf allows easy statistical operations: mean, varia nce, … 
• Dominant features of the pdf can be connected to 

properties and tracked in manufacturing processes 



Original microstructure of 130x130x130 
volume elements with orientation space binned 
into 512 distinct orientations. The far right 
shows bin 35 as blue and bin 5 as red in the 
original microstructure.

Bottom:  Bins 35 and 5 are reconstructed 
exactly up to a linear shift!

Reconstruction from 2 -pt Statistics



Example Digitally Created 
Microstructure:
Average Feature Size ~ 15 
pixels
Coherence Length for Auto-
correlation ~ 125 pixels

Coherence Length

Coherence length (C) provides guidance 
on scan sizes
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Features of Interest
Many local features of interest can be identified based on concepts of n-point statistics 
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RVE

Elastic Modulus

RVE: 111 GPa
Sample: 111 GPa

Critically Stressed 
Volume Fraction

RVE: 0.0866
Sample: 0.0897

3% Error



Weighted SVE Sets

Critically 
Stressed 
Volume 

Fraction in 
Sample
= 0.0897

0.0974
8.6% Error

0.0909
1.3% Error

0.0810
9.9% Error



Microstructure Representation

Surface Curvature data

Polymer Chains 

Simulation Data

Strain Distribution 

Simulation Data

• Thinking of microstructure as a digital signal 

allows a generalized treatment at multiple 

hierarchical length/structure scales:	(*w
• Intuitive measures of microstructure: average 

grain size, average spacing, ODF, MODF, ...

• Naturally organized extensible measures of 

microstructure: n-point statistics

• Data Analytics: seek objective low-dimensional 

representations for process-structure-property 

relationships
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Original Axes Principal Axes Reduced Axis

• Axes prioritized based on variance in the data
• Unsupervised (i.e., uninformed) and Independent

Intuition and/or Known Physics and/or Data Driven

Dimensionality Reduction



PC Scores as Microstructure Measures

Hypothesis:  PCA weights of n-point statistics provide 
objective measures of microstructure

Sl(P) = 4 �E(P)xEl
yz{( T?7 ,|)

E67
+ Sl̅



Microstructure Databases
HT1-20 micrographs HT2-28 Micrographs HT3-32 micrographs

HT4-36 micrographs HT5-32 micrographs

Data from 
H. Fraser’s 

group at 
OSU



Red=HT1
Blue=HT2

Green=HT3
=HT4 

Magenta=HT5

• Each point corresponds to 
a microstructure dataset.
• Datasets from the same 
heat treatment are shown as  
a hull.
• Volume of the hull can be 
related directly to the 
variance in structure 
between datasets.
• Euclidean distance is a 
metric of similarity or 
difference between samples 
• Quality control applications

Microstructure Databases



Microstructure Databases



Unsupervised Classification of Different 
Potentials Based on Atomic Structure

Collaboration 
with Becker 
and Trautt
(NIST)



InitialFinal

Visualization of 4 -D Microstructure Datasets

Datasets from 
phase-field 
simulations of 
microstructure 
evolution (3-D 
space + time)



Overall Framework



Code Repositories

• Spatial Statistics  
http://tonyfast.com/SpatialStatisticsFFT/

• PyMKS
http://openmaterials.github.io/pymks/index.html


